Concept

Language equation

Summary
Language equations are mathematical statements that resemble numerical equations, but the variables assume values of formal languages rather than numbers. Instead of arithmetic operations in numerical equations, the variables are joined by language operations. Among the most common operations on two languages A and B are the set union A ∪ B, the set intersection A ∩ B, and the concatenation A⋅B. Finally, as an operation taking a single operand, the set A* denotes the Kleene star of the language A. Therefore language equations can be used to represent formal grammars, since the languages generated by the grammar must be the solution of a system of language equations. Language equations and context-free grammars Ginsburg and Rice gave an alternative definition of context-free grammars by language equations. To every context-free grammar G = (V, \Sigma, R, S), is associated a system of equations in variables V. Each variable X \in V is an
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading