Concept

Antecedent (logic)

Related concepts (4)
Contraposition
In logic and mathematics, contraposition refers to the inference of going from a conditional statement into its logically equivalent contrapositive, and an associated proof method known as proof by contraposition. The contrapositive of a statement has its antecedent and consequent inverted and flipped. Conditional statement . In formulas: the contrapositive of is . If P, Then Q. — If not Q, Then not P. "If it is raining, then I wear my coat" — "If I don't wear my coat, then it isn't raining.
Material conditional
The material conditional (also known as material implication) is an operation commonly used in logic. When the conditional symbol is interpreted as material implication, a formula is true unless is true and is false. Material implication can also be characterized inferentially by modus ponens, modus tollens, conditional proof, and classical reductio ad absurdum. Material implication is used in all the basic systems of classical logic as well as some nonclassical logics.
Modus tollens
In propositional logic, modus tollens (ˈmoʊdəs_ˈtɒlɛnz) (MT), also known as modus tollendo tollens (Latin for "method of removing by taking away") and denying the consequent, is a deductive argument form and a rule of inference. Modus tollens takes the form of "If P, then Q. Not Q. Therefore, not P." It is an application of the general truth that if a statement is true, then so is its contrapositive. The form shows that inference from P implies Q to the negation of Q implies the negation of P is a valid argument.
Modus ponens
In propositional logic, modus ponens (ˈmoʊdəs_ˈpoʊnɛnz; MP), also known as modus ponendo ponens (Latin for "method of putting by placing"), implication elimination, or affirming the antecedent, is a deductive argument form and rule of inference. It can be summarized as "P implies Q. P is true. Therefore Q must also be true." Modus ponens is closely related to another valid form of argument, modus tollens. Both have apparently similar but invalid forms such as affirming the consequent, denying the antecedent, and evidence of absence.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.