Summary
Petroleum is a fossil fuel that can be drawn from beneath the earth's surface. Reservoirs of petroleum are formed through the mixture of plants, algae, and sediments in shallow seas under high pressure. Petroleum is mostly recovered from oil drilling. Seismic surveys and other methods are used to locate oil reservoirs. Oil rigs and oil platforms are used to drill long holes into the earth to create an oil well and extract petroleum. After extraction, oil is refined to make gasoline and other products such as tires and refrigerators. Extraction of petroleum can be dangerous and have led to oil spills. Geologists and geophysicists use seismic surveys to search for geological structures that may form oil reservoirs. The "classic" method includes making an underground explosion nearby and observing the seismic response, which provides information about the geological structures underground. However, "passive" methods that extract information from naturally occurring seismic waves are also used. Other instruments such as gravimeters and magnetometers are also used in the search for petroleum. Extracting crude oil normally starts with drilling wells into an underground reservoir. When an oil well has been tapped, a geologist (known on the rig as the "mudlogger") will note its presence. Historically in the United States, in some oil fields the oil rose naturally to the surface, but most of these fields have long since been used up, except in parts of Alaska. Often many wells (called multilateral wells) are drilled into the same reservoir, to an economically viable extraction rate. Some wells (secondary wells) may pump water, steam, acids or various gas mixtures into the reservoir to raise or maintain the reservoir pressure and economical extraction Oil well The oil well is created by drilling a long hole into the earth with an oil rig. A steel pipe (casing) is placed in the hole, to provide structural integrity to the newly drilled well bore. Holes are then made in the base of the well to enable oil to pass into the bore.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (12)
Oil Extraction Process
Explains the oil extraction process from soya beans using hexane and analyzes mass balances.
Dynamic Programming: Optimal Decision Making
Explores dynamic programming for optimizing decision-making processes over time, using real-world examples like oil extraction and stock trading.
Hydrocarbon Storage
Explores the debate over hydrocarbon storage tanks in Vernis, Geneva, and the implications of relocating them.
Show more
Related publications (43)

Location is a major barrier for transferring US fossil fuel employment to green jobs

Michaël Aklin

The green energy revolution may displace 1.7 million fossil fuel workers in the US but a Just Transition to emerging green industry jobs offers possibilities for re-employing these workers. Here, using 14 years of power plant data from the US Energy Inform ...
2023

Extraction of fluids to mitigate the seismic risk associated with post-injection aseismic slip

Alexis Alejandro Sáez Uribe

Subsurface fluid injections are commonly accompanied by seismicity which can sometimes result in earthquakes of relatively large magnitude that pose a serious hazard for the geo-energy industry. Current efforts to manage the seismic risk associated with fl ...
2023

A fully-coupled highly-parallelized geomechanical simulator for assessing induced seismicity

Jean-François Molinari, Brice Tanguy Alphonse Lecampion, Guillaume Anciaux, Nicolas Richart, Emil Gallyamov

Induced seismicity caused by anthropogenic modification of the subsurface effective stress state has been observed in a number of industrial applications -- from hydrocarbon extraction (e.g., Groningen [1]), drilling waste-water disposal (e.g., [2]) to the ...
2023
Show more
Related concepts (16)
Heavy crude oil
Heavy crude oil (or extra heavy crude oil) is highly viscous oil that cannot easily flow from production wells under normal reservoir conditions. It is referred to as "heavy" because its density or specific gravity is higher than that of light crude oil. Heavy crude oil has been defined as any liquid petroleum with an API gravity less than 20°. Physical properties that differ between heavy crude oils and lighter grades include higher viscosity and specific gravity, as well as higher molecular weight hydrocarbon composition.
Petroleum reservoir
A petroleum reservoir or oil and gas reservoir is a subsurface accumulation of hydrocarbons contained in porous or fractured rock formations. Such reservoirs form when kerogen (ancient plant matter) is created in surrounding rock by the presence of high heat and pressure in the Earth's crust. Petroleum reservoirs are broadly classified as conventional and unconventional reservoirs.
Enhanced oil recovery
Enhanced oil recovery (abbreviated EOR), also called tertiary recovery, is the extraction of crude oil from an oil field that cannot be extracted otherwise. Although the primary and secondary recovery techniques rely on the pressure differential between the surface and the underground well, enhanced oil recovery functions by altering the chemical composition of the oil itself in order to make it easier to extract. EOR can extract 30% to 60% or more of a reservoir's oil, compared to 20% to 40% using primary and secondary recovery.
Show more