Concept

# Imaginary line (mathematics)

Summary
In complex geometry, an imaginary line is a straight line that only contains one real point. It can be proven that this point is the intersection point with the conjugated line. It is a special case of an imaginary curve. An imaginary line is found in the complex projective plane P2(C) where points are represented by three homogeneous coordinates (x_1,\ x_2,\ x_3),\quad x_i \isin C . Boyd Patterson described the lines in this plane: :The locus of points whose coordinates satisfy a homogeneous linear equation with complex coefficients ::: a_1\ x_1 +\ a_2\ x_2 \ + a_3\ x_3 \ =\ 0 :is a straight line and the line is real or imaginary according as the coefficients of its equation are or are not proportional to three real numbers. Felix Klein described imaginary geometrical structures: "We will characterize a geometric structure as imaginary if its coordinates are not all real.: According to Hatton: :The locus of the double points (imaginary) of the overla
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications

Related people

Related units