Concept

Rainbow storage

Summary
Rainbow storage is a developing paper-based data storage technique first demonstrated by Indian student Sainul Abideen in November 2006. Abideen received his MCA from MES Engineering College Kuttipuram in Kerala's Malappuram District . Initial newspaper reports of the technology were disputed by multiple technical sources, although Abideen says those reports were based on a misunderstanding of the technology. The paper meant to demonstrate the capability of storing relatively large amounts of data (and not necessarily in the gigabyte range) using textures and diagrams. The Rainbow data storage technology claims to use geometric shapes such as triangles, circles and squares of various colors to store a large amount of data on ordinary paper or plastic surfaces. This would provide several advantages over current forms of optical- or magnetic data storage like less environmental pollution due to the biodegradability of paper, low cost and high capacity. Data could be stored on "Rainbow Versatile Disk" (RVD) or plastic/paper cards of any form factor (like SIM cards). Following the wide media attention this news received, some of the claims have been disputed by various experts. Printing at 1,200 dots per inch (DPI) leads to a theoretical maximum of 1,440,000 colored dots per square inch. If a scanner can reliably distinguish between 256 unique colors (thus encoding one byte per dot), the maximum possible storage is approximately 140 megabytes for a sheet of A4 paper–much lower when the necessary error correction is employed. If the scanner were able to accurately distinguish between 16,777,216 colors (24 bits, or 3 bytes per dot), the capacity would triple, but it still falls well below the media stories' claims of several hundred gigabytes. Printing this quantity of unique colors would require specialized equipment to generate many spot colors. The process color model used by most printers provides only four colors, with additional colors simulated by a halftone pattern.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.