Concept

Schur–Zassenhaus theorem

Summary
The Schur–Zassenhaus theorem is a theorem in group theory which states that if G is a finite group, and N is a normal subgroup whose order is coprime to the order of the quotient group G/N, then G is a semidirect product (or split extension) of N and G/N. An alternative statement of the theorem is that any normal Hall subgroup N of a finite group G has a complement in G. Moreover if either N or G/N is solvable then the Schur–Zassenhaus theorem also states that all complements of N in G are conjugate. The assumption that either N or G/N is solvable can be dropped as it is always satisfied, but all known proofs of this require the use of the much harder Feit–Thompson theorem. The Schur–Zassenhaus theorem at least partially answers the question: "In a composition series, how can we classify gro
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading