Summary
Volcanism, vulcanism or volcanicity is the phenomenon of eruption of molten rock (magma) onto the surface of the Earth or a solid-surface planet or moon, where lava, pyroclastics, and volcanic gases erupt through a break in the surface called a vent. It includes all phenomena resulting from and causing magma within the crust or mantle of the body, to rise through the crust and form volcanic rocks on the surface. Magmas that reach the surface and solidify form extrusive landforms. Magma from the mantle or lower crust rises through the crust towards the surface. If magma reaches the surface, its behavior depends on the viscosity of the molten constituent rock. Viscous (thick) magma produces volcanoes characterised by explosive eruptions, while non-viscous (runny) magma produce volcanoes characterised by effusive eruptions pouring large amounts of lava onto the surface. In some cases, rising magma can cool and solidify without reaching the surface. Instead, the cooled and solidified igneous mass crystallises within the crust to form an igneous intrusion. As magma cools the chemicals in the crystals formed are effectively removed from the main mix of the magma (by a process known as fractional crystallization), so the chemical content of the remaining magma evolves as it solidifies slowly. Fresh unevolved magma injections can remobilise more evolved magmas, allowing eruptions from more viscous magmas. Plate tectonics Movement of molten rock in the mantle, caused by thermal convection currents, coupled with gravitational effects of changes on the earth's surface (erosion, deposition, even asteroid impact and patterns of post-glacial rebound) drive plate tectonic motion and ultimately volcanism. Volcano Volcanoes are places where magma reaches the planet's surface. The type of volcano depends on the location of the eruption and the consistency of the magma. Intrusion Pluton emplacement These are formed where magma pushes between existing rock, intrusions can be in the form of batholiths, dikes, sills and layered intrusions.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.