A motor soft starter is a device used with AC electrical motors to temporarily reduce the load and torque in the powertrain and electric current surge of the motor during start-up. This reduces the mechanical stress on the motor and shaft, as well as the electrodynamic stresses on the attached power cables and electrical distribution network, extending the lifespan of the system.
It can consist of mechanical or electrical devices, or a combination of both. Mechanical soft starters include clutches and several types of couplings using a fluid, magnetic forces, or steel shot to transmit torque, similar to other forms of torque limiter. Electrical soft starters can be any control system that reduces the torque by temporarily reducing the voltage or current input, or a device that temporarily alters how the motor is connected in the electric circuit.
Whenever the armature of an electric motor is moving, both the motor action and generator action are occurring simultaneously; the electromagnetic force produced by generator action opposes the desired motor action and effectively creates a variable motor resistance which increases with motor speed. When a voltage is applied to the motor, this resistance dictates the current drawn by the motor. At rest, the resistance is relatively low, so the starting or inrush current can be high if the full line voltage is applied to the motor. Compared to DC motors, AC motors tend to have significantly higher stator resistance and correspondingly lower inrush current.
Nevertheless, across-the line starting of induction motors is accompanied by inrush currents up to 7-10 times higher than running current, and higher efficiency motors can experience inrush currents 10-15 times running current. In addition, starting torque can be up to 3 times higher than running torque. The starting torque transient can create a sudden mechanical stress on the machine, which leads to a reduced service life. Moreover, the high inrush current stresses the power supply, which may lead to voltage dips.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course focuses on the biophysical mechanisms of mammalian brain function. We will describe how neurons communicate through synaptic transmission in order to process sensory information ultimately
An AC motor is an electric motor driven by an alternating current (AC). The AC motor commonly consists of two basic parts, an outside stator having coils supplied with alternating current to produce a rotating magnetic field, and an inside rotor attached to the output shaft producing a second rotating magnetic field. The rotor magnetic field may be produced by permanent magnets, reluctance saliency, or DC or AC electrical windings.
A motor controller is a device or group of devices that can coordinate in a predetermined manner the performance of an electric motor. A motor controller might include a manual or automatic means for starting and stopping the motor, selecting forward or reverse rotation, selecting and regulating the speed, regulating or limiting the torque, and protecting against overloads and electrical faults. Motor controllers may use electromechanical switching, or may use power electronics devices to regulate the speed and direction of a motor.
Molecular machines offer many opportunities for the development of responsive materials and introduce autono-mous motion in molecular systems. While basic molecular switches and motors carry out one type of motion upon being exposed to an external stimulus ...
Large horsepower induction motors play a critical role in the operation of industrial facilities. In this respect, the distribution network operators dedicate a high priority to the operational safety of these motor loads. In this paper, the induction moto ...
This paper addresses the design and manufacturing of a crab-leg based MEMS relay for a high power application. Thanks to a contact resistance lower than 100 mΩ, the relay can hold a current in the order of magnitude of an Ampere without further thermal lim ...