BIBO stabilityIn signal processing, specifically control theory, bounded-input, bounded-output (BIBO) stability is a form of stability for signals and systems that take inputs. If a system is BIBO stable, then the output will be bounded for every input to the system that is bounded. A signal is bounded if there is a finite value such that the signal magnitude never exceeds , that is For discrete-time signals: For continuous-time signals: For a continuous time linear time-invariant (LTI) system, the condition for BIBO stability is that the impulse response, , be absolutely integrable, i.
Argument principleIn complex analysis, the argument principle (or Cauchy's argument principle) relates the difference between the number of zeros and poles of a meromorphic function to a contour integral of the function's logarithmic derivative. Specifically, if f(z) is a meromorphic function inside and on some closed contour C, and f has no zeros or poles on C, then where Z and P denote respectively the number of zeros and poles of f(z) inside the contour C, with each zero and pole counted as many times as its multiplicity and order, respectively, indicate.
Weierstrass factorization theoremIn mathematics, and particularly in the field of complex analysis, the Weierstrass factorization theorem asserts that every entire function can be represented as a (possibly infinite) product involving its zeroes. The theorem may be viewed as an extension of the fundamental theorem of algebra, which asserts that every polynomial may be factored into linear factors, one for each root. The theorem, which is named for Karl Weierstrass, is closely related to a second result that every sequence tending to infinity has an associated entire function with zeroes at precisely the points of that sequence.
Isolated singularityIn complex analysis, a branch of mathematics, an isolated singularity is one that has no other singularities close to it. In other words, a complex number z0 is an isolated singularity of a function f if there exists an open disk D centered at z0 such that f is holomorphic on D \ {z0}, that is, on the set obtained from D by taking z0 out. Formally, and within the general scope of general topology, an isolated singularity of a holomorphic function is any isolated point of the boundary of the domain .