In the mathematical field of knot theory, the hyperbolic volume of a hyperbolic link is the volume of the link's complement with respect to its complete hyperbolic metric. The volume is necessarily a finite real number, and is a topological invariant of the link. As a link invariant, it was first studied by William Thurston in connection with his geometrization conjecture.
A hyperbolic link is a link in the 3-sphere whose complement (the space formed by removing the link from the 3-sphere) can be given a complete Riemannian metric of constant negative curvature, giving it the structure of a hyperbolic 3-manifold, a quotient of hyperbolic space by a group acting freely and discontinuously on it. The components of the link will become cusps of the 3-manifold, and the manifold itself will have finite volume. By Mostow rigidity, when a link complement has a hyperbolic structure, this structure is uniquely determined, and any geometric invariants of the structure are also topological invariants of the link. In particular, the hyperbolic volume of the complement is a knot invariant. In order to make it well-defined for all knots or links, the hyperbolic volume of a non-hyperbolic knot or link is often defined to be zero.
There are only finitely many hyperbolic knots for any given volume. A mutation of a hyperbolic knot will have the same volume, so it is possible to concoct examples with equal volumes; indeed, there are arbitrarily large finite sets of distinct knots with equal volumes.
In practice, hyperbolic volume has proven very effective in distinguishing knots, utilized in some of the extensive efforts at knot tabulation. Jeffrey Weeks's computer program SnapPea is the ubiquitous tool used to compute hyperbolic volume of a link.
More generally, the hyperbolic volume may be defined for any hyperbolic 3-manifold. The Weeks manifold has the smallest possible volume of any closed manifold (a manifold that, unlike link complements, has no cusps); its volume is approximately 0.9427.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, a hyperbolic link is a link in the 3-sphere with complement that has a complete Riemannian metric of constant negative curvature, i.e. has a hyperbolic geometry. A hyperbolic knot is a hyperbolic link with one component. As a consequence of the work of William Thurston, it is known that every knot is precisely one of the following: hyperbolic, a torus knot, or a satellite knot. As a consequence, hyperbolic knots can be considered plentiful. A similar heuristic applies to hyperbolic links.
In mathematics, a hyperbolic manifold is a space where every point looks locally like hyperbolic space of some dimension. They are especially studied in dimensions 2 and 3, where they are called hyperbolic surfaces and hyperbolic 3-manifolds, respectively. In these dimensions, they are important because most manifolds can be made into a hyperbolic manifold by a homeomorphism. This is a consequence of the uniformization theorem for surfaces and the geometrization theorem for 3-manifolds proved by Perelman.
In mathematics, the Borromean rings are three simple closed curves in three-dimensional space that are topologically linked and cannot be separated from each other, but that break apart into two unknotted and unlinked loops when any one of the three is cut or removed. Most commonly, these rings are drawn as three circles in the plane, in the pattern of a Venn diagram, alternatingly crossing over and under each other at the points where they cross.
We present an algorithmic approach to discover, study, and design multistable elastic knots. Elastic knots are physical realizations of closed curves embedded in 3-space. When endowed with the material thickness and bending resistance of a physical wire, t ...
The work is about the study of group representations in the group of isometries of a separable complex hyperbolic space. The main part is the classification of the representations of the group of isometries of a finite dimensional complex hyperbolic spa ...
EPFL2023
We establish new results on the weak containment of quasi-regular and Koopman representations of a second countable locally compact group GG associated with nonsingular GG-spaces. We deduce that any two boundary representations of a hyperbolic locally ...