Multilevel modelMultilevel models (also known as hierarchical linear models, linear mixed-effect model, mixed models, nested data models, random coefficient, random-effects models, random parameter models, or split-plot designs) are statistical models of parameters that vary at more than one level. An example could be a model of student performance that contains measures for individual students as well as measures for classrooms within which the students are grouped.
Frequency (statistics)In statistics, the frequency or absolute frequency of an event is the number of times the observation has occurred/recorded in an experiment or study. These frequencies are often depicted graphically or in tabular form. The cumulative frequency is the total of the absolute frequencies of all events at or below a certain point in an ordered list of events. The relative frequency (or empirical probability) of an event is the absolute frequency normalized by the total number of events: The values of for all events can be plotted to produce a frequency distribution.
Probit modelIn statistics, a probit model is a type of regression where the dependent variable can take only two values, for example married or not married. The word is a portmanteau, coming from probability + unit. The purpose of the model is to estimate the probability that an observation with particular characteristics will fall into a specific one of the categories; moreover, classifying observations based on their predicted probabilities is a type of binary classification model. A probit model is a popular specification for a binary response model.
Binomial regressionIn statistics, binomial regression is a regression analysis technique in which the response (often referred to as Y) has a binomial distribution: it is the number of successes in a series of n independent Bernoulli trials, where each trial has probability of success p. In binomial regression, the probability of a success is related to explanatory variables: the corresponding concept in ordinary regression is to relate the mean value of the unobserved response to explanatory variables.