CounterexampleA counterexample is any exception to a generalization. In logic a counterexample disproves the generalization, and does so rigorously in the fields of mathematics and philosophy. For example, the fact that "student John Smith is not lazy" is a counterexample to the generalization “students are lazy”, and both a counterexample to, and disproof of, the universal quantification “all students are lazy.” In mathematics, the term "counterexample" is also used (by a slight abuse) to refer to examples which illustrate the necessity of the full hypothesis of a theorem.
Proof by exhaustionProof by exhaustion, also known as proof by cases, proof by case analysis, complete induction or the brute force method, is a method of mathematical proof in which the statement to be proved is split into a finite number of cases or sets of equivalent cases, and where each type of case is checked to see if the proposition in question holds. This is a method of direct proof. A proof by exhaustion typically contains two stages: A proof that the set of cases is exhaustive; i.e.
Language of mathematicsThe language of mathematics or mathematical language is an extension of the natural language (for example English) that is used in mathematics and in science for expressing results (scientific laws, theorems, proofs, logical deductions, etc) with concision, precision and unambiguity. The main features of the mathematical language are the following. Use of common words with a derived meaning, generally more specific and more precise. For example, "or" means "one, the other or both", while, in common language, "both" is sometimes included and sometimes not.
Proof (truth)A proof is sufficient evidence or a sufficient argument for the truth of a proposition. The concept applies in a variety of disciplines, with both the nature of the evidence or justification and the criteria for sufficiency being area-dependent. In the area of oral and written communication such as conversation, dialog, rhetoric, etc., a proof is a persuasive perlocutionary speech act, which demonstrates the truth of a proposition.
Proof by infinite descentIn mathematics, a proof by infinite descent, also known as Fermat's method of descent, is a particular kind of proof by contradiction used to show that a statement cannot possibly hold for any number, by showing that if the statement were to hold for a number, then the same would be true for a smaller number, leading to an infinite descent and ultimately a contradiction. It is a method which relies on the well-ordering principle, and is often used to show that a given equation, such as a Diophantine equation, has no solutions.
Constructive proofIn mathematics, a constructive proof is a method of proof that demonstrates the existence of a mathematical object by creating or providing a method for creating the object. This is in contrast to a non-constructive proof (also known as an existence proof or pure existence theorem), which proves the existence of a particular kind of object without providing an example. For avoiding confusion with the stronger concept that follows, such a constructive proof is sometimes called an effective proof.
Quadratic irrational numberIn mathematics, a quadratic irrational number (also known as a quadratic irrational or quadratic surd) is an irrational number that is the solution to some quadratic equation with rational coefficients which is irreducible over the rational numbers. Since fractions in the coefficients of a quadratic equation can be cleared by multiplying both sides by their least common denominator, a quadratic irrational is an irrational root of some quadratic equation with integer coefficients.
Furstenberg's proof of the infinitude of primesIn mathematics, particularly in number theory, Hillel Furstenberg's proof of the infinitude of primes is a topological proof that the integers contain infinitely many prime numbers. When examined closely, the proof is less a statement about topology than a statement about certain properties of arithmetic sequences. Unlike Euclid's classical proof, Furstenberg's proof is a proof by contradiction. The proof was published in 1955 in the American Mathematical Monthly while Furstenberg was still an undergraduate student at Yeshiva University.
Mathematical practiceMathematical practice comprises the working practices of professional mathematicians: selecting theorems to prove, using informal notations to persuade themselves and others that various steps in the final proof are convincing, and seeking peer review and publication, as opposed to the end result of proven and published theorems. Philip Kitcher has proposed a more formal definition of a mathematical practice, as a quintuple. His intention was primarily to document mathematical practice through its historical changes.
Probabilistic methodIn mathematics, the probabilistic method is a nonconstructive method, primarily used in combinatorics and pioneered by Paul Erdős, for proving the existence of a prescribed kind of mathematical object. It works by showing that if one randomly chooses objects from a specified class, the probability that the result is of the prescribed kind is strictly greater than zero. Although the proof uses probability, the final conclusion is determined for certain, without any possible error.