**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Tarjan's strongly connected components algorithm

Summary

Tarjan's strongly connected components algorithm is an algorithm in graph theory for finding the strongly connected components (SCCs) of a directed graph. It runs in linear time, matching the time bound for alternative methods including Kosaraju's algorithm and the path-based strong component algorithm. The algorithm is named for its inventor, Robert Tarjan.
Overview
The algorithm takes a directed graph as input, and produces a partition of the graph's vertices into the graph's strongly connected components. Each vertex of the graph appears in exactly one of the strongly connected components. Any vertex that is not on a directed cycle forms a strongly connected component all by itself: for example, a vertex whose in-degree or out-degree is 0, or any vertex of an acyclic graph.
The basic idea of the algorithm is this: a depth-first search (DFS) begins from an arbitrary start node (and subsequent depth-first searches are conducted on any nodes that have not yet been found)

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading

Related people

Related units

No results

No results

Related courses

Related publications

Related lectures

Related concepts

No results

No results

No results

No results