Concept

Halomethane

Halomethane compounds are derivatives of methane () with one or more of the hydrogen atoms replaced with halogen atoms (F, Cl, Br, or I). Halomethanes are both naturally occurring, especially in marine environments, and human-made, most notably as refrigerants, solvents, propellants, and fumigants. Many, including the chlorofluorocarbons, have attracted wide attention because they become active when exposed to ultraviolet light found at high altitudes and destroy the Earth's protective ozone layer. Like methane itself, halomethanes are tetrahedral molecules. The halogen atoms differ greatly in size and charge from hydrogen and from each other. Consequently, most halomethanes deviate from the perfect tetrahedral symmetry of methane. The physical properties of halomethanes depend on the number and identity of the halogen atoms in the compound. In general, halomethanes are volatile but less so than methane because of the polarizability of the halides. The polarizability of the halides and the polarity of the molecules makes them useful as solvents. The halomethanes are far less flammable than methane. Broadly speaking, reactivity of the compounds is greatest for the iodides and lowest for the fluorides. The halomethanes are produced on an industrial scale from abundant precursors such as natural gas or methanol, and from halogens or halides. They are usually prepared by one of three methods. Free radical chlorination of methane (under ultraviolet light): This method is useful for the production of (n = 1, 2, 3, or 4). The main problems with this method are that it cogenerates HCl and it produces mixtures of different products. Using in large excess generates primarily and using in large excess generates primarily , but mixtures of other products will still be present. Halogenation of methanol. This method is used for the production of the mono-chloride, -bromide, and -iodide. Halogen exchange. The method is mainly used to produce fluorinated derivatives from the chlorides. Reaction of methane with hypochlorous acid, producing water.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (32)
Related concepts (17)
Dichlorodifluoromethane
Dichlorodifluoromethane (R-12) is a colorless gas usually sold under the brand name Freon-12, and a chlorofluorocarbon halomethane (CFC) used as a refrigerant and aerosol spray propellant. In compliance with the Montreal Protocol, its manufacture was banned in developed countries (non-article 5 countries) in 1996, and in developing countries (Article 5 countries) in 2010 out of concerns about its damaging effect on the ozone layer. Its only allowed usage is as a fire retardant in submarines and aircraft.
Carbon tetrafluoride
Tetrafluoromethane, also known as carbon tetrafluoride or R-14, is the simplest perfluorocarbon (CF4). As its IUPAC name indicates, tetrafluoromethane is the perfluorinated counterpart to the hydrocarbon methane. It can also be classified as a haloalkane or halomethane. Tetrafluoromethane is a useful refrigerant but also a potent greenhouse gas. It has a very high bond strength due to the nature of the carbon–fluorine bond.
Fire extinguisher
A fire extinguisher is a handheld active fire protection device usually filled with a dry or wet chemical used to extinguish or control small fires, often in emergencies. It is not intended for use on an out-of-control fire, such as one which has reached the ceiling, endangers the user (i.e., no escape route, smoke, explosion hazard, etc.), or otherwise requires the equipment, personnel, resources or expertise of a fire brigade. Typically, a fire extinguisher consists of a hand-held cylindrical pressure vessel containing an agent that can be discharged to extinguish a fire.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.