**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Adaptive algorithm

Summary

An adaptive algorithm is an algorithm that changes its behavior at the time it is run, based on information available and on a priori defined reward mechanism (or criterion). Such information could be the story of recently received data, information on the available computational resources, or other run-time acquired (or a priori known) information related to the environment in which it operates.
Among the most used adaptive algorithms is the Widrow-Hoff’s least mean squares (LMS), which represents a class of stochastic gradient-descent algorithms used in adaptive filtering and machine learning. In adaptive filtering the LMS is used to mimic a desired filter by finding the filter coefficients that relate to producing the least mean square of the error signal (difference between the desired and the actual signal).
For example, stable partition, using no additional memory is O(n lg n) but given O(n) memory, it can be O(n) in time. As implemented by the C++ Standard Library,

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading

Related people (5)

Related concepts

No results

Related units (6)

Related publications (37)

Loading

Loading

Loading

Related courses (4)

EE-512: Applied biomedical signal processing

The goal of this course is twofold: (1) to introduce physiological basis, signal acquisition solutions (sensors) and state-of-the-art signal processing techniques, and (2) to propose concrete examples of applications for vital sign monitoring and diagnosis purposes.

EE-556: Mathematics of data: from theory to computation

This course provides an overview of key advances in continuous optimization and statistical analysis for machine learning. We review recent learning formulations and models as well as their guarantees, describe scalable solution techniques and algorithms, and illustrate the trade-offs involved.

MATH-351: Advanced numerical analysis

The student will learn state-of-the-art algorithms for solving differential equations. The analysis and implementation of these algorithms will be discussed in some detail.

We review adaptive Markov chain Monte Carlo algorithms (MCMC) as a mean to optimise their performance. Using simple toy examples we review their theoretical underpinnings, and in particular show why adaptive MCMC algorithms might fail when some fundamental properties are not satisfied. This leads to guidelines concerning the design of correct algorithms. We then review criteria and the useful framework of stochastic approximation, which allows one to systematically optimise generally used criteria, but also analyse the properties of adaptive MCMC algorithms. We then propose a series of novel adaptive algorithms which prove to be robust and reliable in practice. These algorithms are applied to artificial and high dimensional scenarios, but also to the classic mine disaster dataset inference problem.

2008Related lectures (6)