Related people (12)
Pascal Fua
Pascal Fua received an engineering degree from Ecole Polytechnique, Paris, in 1984 and the Ph.D. degree in Computer Science from the University of Orsay in 1989. He then worked at SRI International and INRIA Sophia-Antipolis as a Computer Scientist. He joined EPFL in 1996 where he is now a Professor in the School of Computer and Communication Science and heads the Computer Vision Laboratory. His research interests include shape modeling and motion recovery from images, analysis of microscopy images, and Augmented Reality. His research interests include shape modeling and motion recovery from images, analysis of microscopy images, and machine learning. He has (co)authored over 300 publications in refereed journals and conferences. He is an IEEE Fellow and has been an Associate Editor of IEEE journal Transactions for Pattern Analysis and Machine Intelligence. He often serves as program committee member, area chair, and program chair of major vision conferences and has cofounded three spinoff companies (Pix4D, PlayfulVision, and NeuralConcept).
Ali H. Sayed
Ali H. Sayed is Dean of Engineering at EPFL, Switzerland, where he also leads the Adaptive Systems Laboratory.  He has also served as Distinguished Professor and Chairman of Electrical Engineering at UCLA. He is recognized as a Highly Cited Researcher and is a member of the US National Academy of Engineering. He is also a member of the World Academy of Sciences and served as President of the IEEE Signal Processing Society during 2018 and 2019. Dr. Sayed is an author/co-author of over 570 scholarly publications and six books. His research involves several areas including adaptation and learning theories, data and network sciences, statistical inference, and multiagent systems. His work has been recognized with several major awards including the 2022 IEEE Fourier Award, the 2020 Norbert Wiener Society Award and the 2015 Education Award from the IEEE Signal Processing Society, the 2014 Papoulis Award from the European Association for Signal Processing, the 2013 Meritorious Service Award and the 2012 Technical Achievement Award from the IEEE Signal Processing Society, the 2005 Terman Award from the American Society for Engineering Education, the 2005 Distinguished Lecturer from the IEEE Signal Processing Society, the 2003 Kuwait Prize, and the 1996 IEEE Donald G. Fink Prize. His publications have been awarded several Best Paper Awards from the IEEE (2002, 2005, 2012, 2014) and EURASIP (2015). He is a Fellow of IEEE, EURASIP, and the American Association for the Advancement of Science (AAAS); the publisher of the journal Science.
Michael Christoph Gastpar
Michael Gastpar is a (full) Professor at EPFL. From 2003 to 2011, he was a professor at the University of California at Berkeley, earning his tenure in 2008. He received his Dipl. El.-Ing. degree from ETH Zürich, Switzerland, in 1997 and his MS degree from the University of Illinois at Urbana-Champaign, IL, USA, in 1999. He defended his doctoral thesis at EPFL on Santa Claus day, 2002. He was also a (full) Professor at Delft University of Technology, The Netherlands. His research interests are in network information theory and related coding and signal processing techniques, with applications to sensor networks and neuroscience. He is a Fellow of the IEEE. He is the co-recipient of the 2013 Communications Society & Information Theory Society Joint Paper Award. He was an Information Theory Society Distinguished Lecturer (2009-2011). He won an ERC Starting Grant in 2010, an Okawa Foundation Research Grant in 2008, an NSF CAREER award in 2004, and the 2002 EPFL Best Thesis Award. He has served as an Associate Editor for Shannon Theory for the IEEE Transactions on Information Theory (2008-11), and as Technical Program Committee Co-Chair for the 2010 International Symposium on Information Theory, Austin, TX.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.