Computation tree logic (CTL) is a branching-time logic, meaning that its model of time is a tree-like structure in which the future is not determined; there are different paths in the future, any one of which might be an actual path that is realized. It is used in formal verification of software or hardware artifacts, typically by software applications known as model checkers, which determine if a given artifact possesses safety or liveness properties. For example, CTL can specify that when some initial condition is satisfied (e.g., all program variables are positive or no cars on a highway straddle two lanes), then all possible executions of a program avoid some undesirable condition (e.g., dividing a number by zero or two cars colliding on a highway). In this example, the safety property could be verified by a model checker that explores all possible transitions out of program states satisfying the initial condition and ensures that all such executions satisfy the property. Computation tree logic belongs to a class of temporal logics that includes linear temporal logic (LTL). Although there are properties expressible only in CTL and properties expressible only in LTL, all properties expressible in either logic can also be expressed in CTL*.
CTL was first proposed by Edmund M. Clarke and E. Allen Emerson in 1981, who used it to synthesize so-called synchronisation skeletons, i.e abstractions of concurrent programs.
The language of well-formed formulas for CTL is generated by the following grammar:
where ranges over a set of atomic formulas. It is not necessary to use all connectives – for example,
comprises a complete set of connectives, and the others can be defined using them.
means 'along All paths' (inevitably)
means 'along at least (there Exists) one path' (possibly)
For example, the following is a well-formed CTL formula:
The following is not a well-formed CTL formula:
The problem with this string is that can occur only when paired with an or an .
CTL uses atomic propositions as its building blocks to make statements about the states of a system.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
We introduce formal verification as an approach for developing highly reliable systems. Formal verification finds proofs that computer systems work under all relevant scenarios. We will learn how to u
Ce cours couvre les fondements des systèmes numériques. Sur la base d'algèbre Booléenne et de circuitscombinatoires et séquentiels incluant les machines d'états finis, les methodes d'analyse et de syn
In theoretical computer science, a transition system is a concept used in the study of computation. It is used to describe the potential behavior of discrete systems. It consists of states and transitions between states, which may be labeled with labels chosen from a set; the same label may appear on more than one transition. If the label set is a singleton, the system is essentially unlabeled, and a simpler definition that omits the labels is possible.
In logic, linear temporal logic or linear-time temporal logic (LTL) is a modal temporal logic with modalities referring to time. In LTL, one can encode formulae about the future of paths, e.g., a condition will eventually be true, a condition will be true until another fact becomes true, etc. It is a fragment of the more complex CTL*, which additionally allows branching time and quantifiers. LTL is sometimes called propositional temporal logic, abbreviated PTL.
This article describes Kripke structures as used in model checking. For a more general description, see Kripke semantics. A Kripke structure is a variation of the transition system, originally proposed by Saul Kripke, used in model checking to represent the behavior of a system. It consists of a graph whose nodes represent the reachable states of the system and whose edges represent state transitions, together with a labelling function which maps each node to a set of properties that hold in the corresponding state.
We consider the influence of transverse confinement on the instability properties of velocity and density distributions reminiscent of those pertaining to exchange flows in stratified inclined ducts, such as the recent experiment of Lefauve et al. [J. Flui ...
We present an exact approach to synthesize temporal-logic formulas in linear temporal logic (LTL) from a set of given positive and negative example traces. Our approach uses topology structures, in particular partial DAGs, to partition the search space int ...
Model-checking intends to verify whether a property is satisfied by a model, or not. Model-checking of high-level models, e.g. SysML models, usually first requires a model transformation to a low level formal specification. The present papers proposes a ne ...