Data integrationData integration involves combining data residing in different sources and providing users with a unified view of them. This process becomes significant in a variety of situations, which include both commercial (such as when two similar companies need to merge their databases) and scientific (combining research results from different bioinformatics repositories, for example) domains. Data integration appears with increasing frequency as the volume (that is, big data) and the need to share existing data explodes.
Data migrationData migration is the process of selecting, preparing, extracting, and transforming data and permanently transferring it from one computer storage system to another. Additionally, the validation of migrated data for completeness and the decommissioning of legacy data storage are considered part of the entire data migration process. Data migration is a key consideration for any system implementation, upgrade, or consolidation, and it is typically performed in such a way as to be as automated as possible, freeing up human resources from tedious tasks.
Semantic integrationSemantic integration is the process of interrelating information from diverse sources, for example calendars and to do lists, email archives, presence information (physical, psychological, and social), documents of all sorts, contacts (including social graphs), search results, and advertising and marketing relevance derived from them. In this regard, semantics focuses on the organization of and action upon information by acting as an intermediary between heterogeneous data sources, which may conflict not only by structure but also context or value.
Enterprise information integrationEnterprise information integration (EII) is the ability to support an unified view of data and information for an entire organization. In a data virtualization application of EII, a process of information integration, using data abstraction to provide a unified interface (known as uniform data access) for viewing all the data within an organization, and a single set of structures and naming conventions (known as uniform information representation) to represent this data; the goal of EII is to get a large set of heterogeneous data sources to appear to a user or system as a single, homogeneous data source.
Enterprise resource planningEnterprise resource planning (ERP) is the integrated management of main business processes, often in real-time and mediated by software and technology. ERP is usually referred to as a category of business management software—typically a suite of integrated applications—that an organization can use to collect, store, manage and interpret data from many business activities. ERP systems can be local-based or cloud-based. Cloud-based applications have grown in recent years due to the increased efficiencies arising from information being readily available from any location with Internet access.
Extract, transform, loadIn computing, extract, transform, load (ETL) is a three-phase process where data is extracted, transformed (cleaned, sanitized, scrubbed) and loaded into an output data container. The data can be collated from one or more sources and it can also be output to one or more destinations. ETL processing is typically executed using software applications but it can also be done manually by system operators. ETL software typically automates the entire process and can be run manually or on reoccurring schedules either as single jobs or aggregated into a batch of jobs.
Business intelligenceBusiness intelligence (BI) comprises the strategies and technologies used by enterprises for the data analysis and management of business information. Common functions of business intelligence technologies include reporting, online analytical processing, analytics, dashboard development, data mining, process mining, complex event processing, business performance management, benchmarking, text mining, predictive analytics, and prescriptive analytics.