A pH indicator is a halochromic chemical compound added in small amounts to a solution so the pH (acidity or basicity) of the solution can be determined visually or spectroscopically by changes in absorption and/or emission properties. Hence, a pH indicator is a chemical detector for hydronium ions (H3O+) or hydrogen ions (H+) in the Arrhenius model. Normally, the indicator causes the color of the solution to change depending on the pH. Indicators can also show change in other physical properties; for example, olfactory indicators show change in their odor. The pH value of a neutral solution is 7.0 at 25°C (standard laboratory conditions). Solutions with a pH value below 7.0 are considered acidic and solutions with pH value above 7.0 are basic. Since most naturally occurring organic compounds are weak electrolytes, such as carboxylic acids and amines, pH indicators find many applications in biology and analytical chemistry. Moreover, pH indicators form one of the three main types of indicator compounds used in chemical analysis. For the quantitative analysis of metal cations, the use of complexometric indicators is preferred, whereas the third compound class, the redox indicators, are used in redox titrations (titrations involving one or more redox reactions as the basis of chemical analysis).
In and of themselves, pH indicators are usually weak acids or weak bases. The general reaction scheme of acidic pH indicators in aqueous solutions can be formulated as:
HInd(aq) + H2O(l) H3O+(aq) + Ind−(aq)
where, "HInd" stands for the acidic form and "Ind−" for the conjugate base of the indicator. Vice versa for basic pH indicators in aqueous solutions:
IndOH(aq) + H2O(l) H2O(l) + Ind+(aq) + OH−(aq)
where "IndOH" stands for the basic form and "Ind+" for the conjugate acid of the indicator.
The ratio of concentration of conjugate acid/base to concentration of the acidic/basic indicator determines the pH (or pOH) of the solution and connects the color to the pH (or pOH) value.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Following an introduction of the main plasma properties, the fundamental concepts of the fluid and kinetic theory of plasmas are introduced. Applications concerning laboratory, space, and astrophysica
This course provides students with an overview over the basics of environmental chemistry. This includes the chemistry of natural systems, as well as the fate of anthropogenic chemicals in natural sys
The asymmetric synthesis of fine chemicals is a research topic of growing importance for the synthesis of modern materials, drugs and agrochemicals. In this lecture, the concepts of asymmetric catalys
In chemistry, there are three definitions in common use of the word "base": Arrhenius bases, Brønsted bases, and Lewis bases. All definitions agree that bases are substances that react with acids, as originally proposed by G.-F. Rouelle in the mid-18th century. In 1884, Svante Arrhenius proposed that a base is a substance which dissociates in aqueous solution to form hydroxide ions OH−. These ions can react with hydrogen ions (H+ according to Arrhenius) from the dissociation of acids to form water in an acid–base reaction.
Litmus is a water-soluble mixture of different dyes extracted from lichens. It is often absorbed onto filter paper to produce one of the oldest forms of pH indicator, used to test materials for acidity. In an acidic medium, blue litmus paper turns red, while in a basic or alkaline medium, red litmus paper turns blue. The word "litmus" comes from an Old Norse word for “moss used for dyeing”. About 1300 the Spanish physician Arnaldus de Villa Nova began using litmus to study acids and bases.
In chemistry, an acid dissociation constant (also known as acidity constant, or acid-ionization constant; denoted K_a) is a quantitative measure of the strength of an acid in solution. It is the equilibrium constant for a chemical reaction HA A^- + H^+ known as dissociation in the context of acid–base reactions. The chemical species HA is an acid that dissociates into , the conjugate base of the acid and a hydrogen ion, .
Learn about how the quality of water is a direct result of complex bio-geo-chemical interactions, and about how to use these processes to mitigate water quality issues.
We introduce a detailed design and fabrication process of Silicon microcantilever arrays for biomolecular detection in liquid environment, utilized with laser readout. We present typical fabrication problems and provide related solutions to obtain high qua ...
Amsterdam2024
, , , ,
This study aimed to enhance solar disinfection (SODIS) by the photo-Fenton process, operated at natural pH, through the re-utilization of fruit wastes. For this purpose, pure organic acids present in fruits and alimentary wastes were tested and compared wi ...
Pergamon-Elsevier Science Ltd2024
, , ,
In this study, MS2 bacteriophage was inactivated by homogeneous and heterogeneous photo-Fenton processes in an alkaline matrix (pH 8) using low concentrations of H2O2 and iron forms (1 mg/L), including Fe(II), Fe(III), and Fe (hydr)oxides. As a reference, ...