Glossary of topologyThis is a glossary of some terms used in the branch of mathematics known as topology. Although there is no absolute distinction between different areas of topology, the focus here is on general topology. The following definitions are also fundamental to algebraic topology, differential topology and geometric topology. All spaces in this glossary are assumed to be topological spaces unless stated otherwise. Absolutely closed See H-closed Accessible See . Accumulation point See limit point.
Thom spaceIn mathematics, the Thom space, Thom complex, or Pontryagin–Thom construction (named after René Thom and Lev Pontryagin) of algebraic topology and differential topology is a topological space associated to a vector bundle, over any paracompact space. One way to construct this space is as follows. Let be a rank n real vector bundle over the paracompact space B. Then for each point b in B, the fiber is an -dimensional real vector space. Choose an orthogonal structure on E, a smoothly varying inner product on the fibers; we can do this using partitions of unity.
Raoul BottRaoul Bott (September 24, 1923 – December 20, 2005) was a Hungarian-American mathematician known for numerous foundational contributions to geometry in its broad sense. He is best known for his Bott periodicity theorem, the Morse–Bott functions which he used in this context, and the Borel–Bott–Weil theorem. Bott was born in Budapest, Hungary, the son of Margit Kovács and Rudolph Bott. His father was of Austrian descent, and his mother was of Hungarian Jewish descent; Bott was raised a Catholic by his mother and stepfather.
Finsler manifoldIn mathematics, particularly differential geometry, a Finsler manifold is a differentiable manifold M where a (possibly asymmetric) Minkowski functional F(x, −) is provided on each tangent space TxM, that enables one to define the length of any smooth curve γ : [a, b] → M as Finsler manifolds are more general than Riemannian manifolds since the tangent norms need not be induced by inner products. Every Finsler manifold becomes an intrinsic quasimetric space when the distance between two points is defined as the infimum length of the curves that join them.
Closed and exact differential formsIn mathematics, especially vector calculus and differential topology, a closed form is a differential form α whose exterior derivative is zero (dα = 0), and an exact form is a differential form, α, that is the exterior derivative of another differential form β. Thus, an exact form is in the of d, and a closed form is in the kernel of d. For an exact form α, α = dβ for some differential form β of degree one less than that of α. The form β is called a "potential form" or "primitive" for α.
Geometric analysisGeometric analysis is a mathematical discipline where tools from differential equations, especially elliptic partial differential equations (PDEs), are used to establish new results in differential geometry and differential topology. The use of linear elliptic PDEs dates at least as far back as Hodge theory. More recently, it refers largely to the use of nonlinear partial differential equations to study geometric and topological properties of spaces, such as submanifolds of Euclidean space, Riemannian manifolds, and symplectic manifolds.
Whitney embedding theoremIn mathematics, particularly in differential topology, there are two Whitney embedding theorems, named after Hassler Whitney: The strong Whitney embedding theorem states that any smooth real m-dimensional manifold (required also to be Hausdorff and second-countable) can be smoothly embedded in the real 2m-space, \R^{2m}, if m > 0. This is the best linear bound on the smallest-dimensional Euclidean space that all m-dimensional manifolds embed in, as the real projective spaces of dimension m cannot be embedded into real (2m − 1)-space if m is a power of two (as can be seen from a characteristic class argument, also due to Whitney).
Charles EhresmannCharles Ehresmann (19 April 1905 – 22 September 1979) was a German-born French mathematician who worked in differential topology and . He was an early member of the Bourbaki group, and is known for his work on the differential geometry of smooth fiber bundles, notably the introduction of the concepts of Ehresmann connection and of jet bundles, and for his seminar on category theory. Ehresmann was born in Strasbourg (at the time part of the German Empire) to an Alsatian-speaking family; his father was a gardener.
4-manifoldIn mathematics, a 4-manifold is a 4-dimensional topological manifold. A smooth 4-manifold is a 4-manifold with a smooth structure. In dimension four, in marked contrast with lower dimensions, topological and smooth manifolds are quite different. There exist some topological 4-manifolds which admit no smooth structure, and even if there exists a smooth structure, it need not be unique (i.e. there are smooth 4-manifolds which are homeomorphic but not diffeomorphic).
Smooth structureIn mathematics, a smooth structure on a manifold allows for an unambiguous notion of smooth function. In particular, a smooth structure allows one to perform mathematical analysis on the manifold. A smooth structure on a manifold is a collection of smoothly equivalent smooth atlases. Here, a smooth atlas for a topological manifold is an atlas for such that each transition function is a smooth map, and two smooth atlases for are smoothly equivalent provided their union is again a smooth atlas for This gives a natural equivalence relation on the set of smooth atlases.