Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The prosody of the speech signal carries both linguistic and paralinguistic information. As such, there is a necessity of its modelling for the purpose of integrating it in speech technology systems. So far, there has been a multitude of proposed models fo ...
Semantically describing the contents of images is one of the classical problems of computer vision. With huge numbers of images being made available daily, there is increasing interest in methods for semantic pixel labelling that exploit large image sets. ...
Automatic speech recognition (ASR) is a fascinating area of research towards realizing humanmachine interactions. After more than 30 years of exploitation of Gaussian Mixture Models (GMMs), state-of-the-art systems currently rely on Deep Neural Network (DN ...
Sit-to-stand and Stand-to-sit transfers (STS) provide relevant information regarding the functional limitation of mobility- impaired patients. The characterization of STS pattern using a single trunk fixed inertial sensor has been proposed as an objective ...
Institute of Electrical and Electronics Engineers2016
Degradation in data quality is still a main source of errors in the modern biometric recognition systems. However, the data quality can be embedded in the recognition methods at global and local levels to build more accurate biometric systems. Local qualit ...
Crowdsourcing has been widely established as a means to enable human computation at large scale, in particular for tasks that require manual labelling of large sets of data items. Answers obtained from heterogeneous crowd workers are aggregated to obtain a ...
We propose to model the acoustic space of deep neural network (DNN) class-conditional posterior probabilities as a union of low- dimensional subspaces. To that end, the training posteriors are used for dictionary learning and sparse coding. Sparse represen ...
We cast the problem of query by example spoken term detection (QbE-STD) as subspace detection where query and background are modeled as a union of low-dimensional subspaces. The speech exemplars used for subspace modeling consist of class-conditional poste ...
In this paper, we propose a classifier for predicting message-level sentiments of English micro-blog messages from Twitter. Our method builds upon the convolutional sentence embedding approach proposed by (Severyn and Moschitti, 2015a; Severyn and Moschitt ...
The current state of the art in RDF Stream Processing (RSP) proposes several models and implementations to combine Semantic Web technologies with Data Stream Management System (DSMS) operators like windows. Meanwhile, only a few solutions combine Semantic ...