Rotation formalisms in three dimensionsIn geometry, various formalisms exist to express a rotation in three dimensions as a mathematical transformation. In physics, this concept is applied to classical mechanics where rotational (or angular) kinematics is the science of quantitative description of a purely rotational motion. The orientation of an object at a given instant is described with the same tools, as it is defined as an imaginary rotation from a reference placement in space, rather than an actually observed rotation from a previous placement in space.
Skew-symmetric matrixIn mathematics, particularly in linear algebra, a skew-symmetric (or antisymmetric or antimetric) matrix is a square matrix whose transpose equals its negative. That is, it satisfies the condition In terms of the entries of the matrix, if denotes the entry in the -th row and -th column, then the skew-symmetric condition is equivalent to The matrix is skew-symmetric because Throughout, we assume that all matrix entries belong to a field whose characteristic is not equal to 2.
PseudoscalarIn linear algebra, a pseudoscalar is a quantity that behaves like a scalar, except that it changes sign under a parity inversion while a true scalar does not. Any scalar product between a pseudovector and an ordinary vector is a pseudoscalar. The prototypical example of a pseudoscalar is the scalar triple product, which can be written as the scalar product between one of the vectors in the triple product and the cross product between the two other vectors, where the latter is a pseudovector.
Axis–angle representationIn mathematics, the axis–angle representation parameterizes a rotation in a three-dimensional Euclidean space by two quantities: a unit vector e indicating the direction (geometry) of an axis of rotation, and an angle of rotation θ describing the magnitude and sense (e.g., clockwise) of the rotation about the axis. Only two numbers, not three, are needed to define the direction of a unit vector e rooted at the origin because the magnitude of e is constrained.
Spacetime algebraIn mathematical physics, spacetime algebra (STA) is a name for the Clifford algebra Cl1,3(R), or equivalently the geometric algebra G(M4). According to David Hestenes, spacetime algebra can be particularly closely associated with the geometry of special relativity and relativistic spacetime. It is a vector space that allows not only vectors, but also bivectors (directed quantities associated with particular planes, such as areas, or rotations) or blades (quantities associated with particular hyper-volumes) to be combined, as well as rotated, reflected, or Lorentz boosted.
Vector areaIn 3-dimensional geometry and vector calculus, an area vector is a vector combining an area quantity with a direction, thus representing an oriented area in three dimensions. Every bounded surface in three dimensions can be associated with a unique area vector called its vector area. It is equal to the surface integral of the surface normal, and distinct from the usual (scalar) surface area. Vector area can be seen as the three dimensional generalization of signed area in two dimensions.
Seven-dimensional cross productIn mathematics, the seven-dimensional cross product is a bilinear operation on vectors in seven-dimensional Euclidean space. It assigns to any two vectors a, b in \mathbb{R}^7 a vector a × b also in \mathbb{R}^7. Like the cross product in three dimensions, the seven-dimensional product is anticommutative and a × b is orthogonal both to a and to b. Unlike in three dimensions, it does not satisfy the Jacobi identity, and while the three-dimensional cross product is unique up to a sign, there are many seven-dimensional cross products.