François MaréchalPh D. in engineering Chemical process engineer
Researcher and lecturer in the field of computer aided process and energy systems engineering.
Lecturer in the mechanical engineering, electrical engineering and environmental sciences engineering in EPFL.
I'm responsible for the Minor in Energy of EPFL and I'm involved in 3 projects of the Competence Center in Energy and Mobility (2nd generation biofuel, Wood SOFC, and gas turbine development with CO2 mitigation) in which i'm contributing to the energy conversion system design and optimisation.
Short summary of my scientific carrer
After a graduation in chemical engineering from the University of Liège, I have obtained a Ph. D. from the University of Liège in the LASSC laboratory of Prof. Kalitventzeff (former president of the European working party on computer aided process engineering). This laboratory was one of the pioneering laboratory in the field of Computer Aided Process Engineering.
In the group of Professor Kalitventzeff, I have worked on the development and the applications of data reconciliation, process modelling and optimisation techniques in the chemical process industry, my experience ranges from nuclear power stations to chemical plants. In the LASSC, I have been responsible from the developments in the field of rational use of energy in the industry. My first research topic has been the methodological development of process integration techniques, combining the use of pinch based methods and of mathematical programming: e.g. for the design of multiperiod heat exchanger networks or Mixed integer non linear programming techniques for the optimal management of utility systems. Fronted with applications in the industry, my work then mainly concentrated on the optimal integration of utility systems considering not only the energy requirements but the cost of the energy requirements and the energy conversion systems. I developed methods for analysing and integrating the utility system, the steam networks, combustion (including waste fuel), gas turbines or other advanced energy conversion systems (cogeneration, refrigeration and heat). The techniques applied uses operation research tools like mixed integer linear programming and exergy analysis. In order to evaluate the results of the utility integration, a new graphical method for representing the integration of the utility systems has been developed. By the use of MILP techniques, the method developed for the utility integration has been extended to handled site scale problems, to incorporate environmental constraints and reduce the water usage. This method (the Effect Modelling and Optimisation method) has been successfully applied to the chemical plants industry, the pulp and paper industry and the power plant. Instead of focusing on academic problems, I mainly developed my research based on industrial applications that lead to valuable and applicable patented results. Recently the methods developed have been extended to realise the thermoeconomic optimisation of integrated systems like fuel cells. My present R&D work concerns the application of multi-objective optimisation strategies in the design of processes and integrated energy conversion systems.
Since 2001, Im working in the Industrial Energy Systems Laboratory (LENI) of Ecole Polytechnique fédérale de Lausanne (EPFL) where Im leading the R&D activities in the field of Computer Aided Analysis and Design of Industrial Energy Systems with a major focus on sustainable energy conversion system development using thermo-economic optimisation methodologies. A part from the application and the development of process integration techniques, that remains my major field of expertise, the applications concern :
Rational use of water and energy in Industrial processes and industrial production sites : projects with NESTLE, EDF, VEOLIA and Borregaard (pulp and paper).Energy conversion and process design : biofuels from waste biomass (with GASNAT, EGO and PSI), water dessalination and waste water treatment plant (VEOLIA), power plant design (ALSTOM), Energy conversion from geothermal sources (BFE). Integrated energy systems in urban areas : together with SCANE and SIG (GE) and IEA annexe 42 for micro-cogeneration systems.
I as well contributed to the definition of the 2000 Watt society and to studies concerning the emergence of green technologies on the market in the frame of the Alliance for Global Sustainability.
Daniel FavratDaniel Favrat got his Master degree in Mechanical Engineering from EPFL in 1972 and his PhD also from EPFL. He then spent 12 years in industrial research laboratories in Canada (Esso Canada) and Switzerland (CERAC: Centre Européen de Recherche Atlas Copco). From 1988 to 2013, he was full professor and director of the Industrial Energy Systems Laboratory (LENI) at EPFL. During that period he was successively director of the Institute of Energy and director of the Institute of Mechanical Engineering. From August 2013 he works at EPFL Energy Center first as director ad interim and now as director technologies.
His research fields include systemic analyses accounting for energy, environment and economics (so-called environomic optimisation) and advanced conversion systems for a more rational use of energy (heat pumps &ORC, engines, fuel cells, power plants, etc).
He is a member of the Swiss Academy of Engineering Sciences and of the National Academy of Technology in France. He has also an active participation in the World Federation of Engineering Organizations (WFEO) as a member of the executive committee and vice-chair of the energy committee. He is associate editor of the journal "Energy" and of International Journal of thermodynamics. He is the author of several books on thermodynamics and energy systems analysis. He is also affiliate professor at the Royal Institute of Technology (KTH) in Stockholm.
Paul MuraltPaul Muralt received a diploma in experimental physics in 1978 at the Swiss Federal Institute of Technology ETH in Zurich. He accomplished his Ph.D. thesis in the field of commensurate-incommensurate phase transitions at the Solid State Laboratory of ETH. In the years 1984 and 1985 he held a post doctoral position at the IBM Research Laboratory in Zurich where he pioneered the application of scanning tunneling microscopy to surface potential imaging. In 1987, after a stay at the Free University of Berlin, he joined the Balzers group in Liechtenstein. He specialized in sputter deposition techniques, and managed since 1991 a department for development and applications of Physical Vapor Deposition and PECVD processes. In 1993, he joined the Ceramics Laboratory of EPFL in Lausanne. AS group leader for thin films and MEMS devices, he specialized in piezoelectric and pyroelectric MEMS with mostly Pb(Zr,Ti)O3 and AlN thin film. His research interests are in thin film growth in general, and more specifically in property assessment of small ferroelectric structures, in integration issues of ferroelectric and other polar materials, property-microstructure relationships, and applications of polar materials in semiconductor and micro-electro-mechanical devices. More recently he extended his interests to oxide thin films of ionic conductors. The focus in piezoelectric thin films was directed towards AlN-ScN alloys. He gives lectures in thin film processing, micro fabrication, and surface analysis. He authored or co-authored more than 230 scientific articles. He became Fellow of IEEE in 2013. In 2005, he received an outstanding achievement award at the International Symposium on Integrated Ferroelectrics (ISIF), and in 2016 the B.C. Sawyer Memorial award.
Chairman of the International Workshops on Piezoelectric MEMS(http://www.piezomems2011.org/) Berend SmitBerend Smit received an MSc in Chemical Engineering in 1987 and an MSc in Physics both from the Technical University in Delft (the Netherlands). He received in 1990 cum laude PhD in Chemistry from Utrecht University (the Netherlands). He was a (senior) Research Physicists at Shell Research from 1988-1997, Professor of Computational Chemistry at the University of Amsterdam (the Netherlands) 1997-2007.
In 2004 Berend Smit was elected Director of the European Center of Atomic and Molecular Computations (CECAM) Lyon France. Since 2007 he is Professor of Chemical Engineering and Chemistry at U.C. Berkeley and Faculty Chemist at Materials Sciences Division, Lawrence Berkeley National Laboratory. Since 2014 he has been director of the Energy Center at EPFL.
Lyesse LalouiDirector, EPFL Soil Mechanics LaboratoryDirector, EPFL Civil Engineering SectionEditor in Chief, ElsevierMember of the Swiss Academy of Engineering SciencesFounding Partner, Geoeg & MeduSoilActive in academic research in the following institutions: Lausanne, EPFL, Durham, Duke University, Nanjing, Hohai UniversityProfessor Lyesse Laloui teaches at EPFL, where he directs the Soil Mechanics Laboratory as well as the Civil Engineering Section. He is a founding partner of the international engineering company Geoeg, and the start-up MeduSoil. In addition, he is an adjunct professor at Duke University, USA and an advisory professor at Hohai University, China as well as honorary director of the International Joint Research Center for Energy Geotechnics in China.He is the recipient of an Advance ERC grant for his BIO-mediated GEO-material Strengthening project. Editor in Chief of the Elsevier Geomechanics for Energy and the Environment journal, he is a leading scientist in the field of geomechanics and geo-energy. He has written and edited 13 books and published over 320 peer reviewed papers; his work is cited more than 6000 times with an h-index of 39 (Scopus). Two of his papers are among the top 1% in the academic field of Engineering. He has given keynote and invited lectures at more than 40 leading international conferences. He has received several international awards (IACMAG, RM Quigley, Roberval) and delivered honorary lectures (Vardoulakis, Minnesota; G.A. Leonards, Purdue; Kersten, Minnesota). He recently acted as the Chair of the international evaluation panel of Civil and Geological Engineering R&D Units of Portugal.Nov. 2019 For further information visit www.epfl.ch/labs/lms/ ; geoeg.net ; medusoil.com Christian Ludwig2005 - today: Adjunct Professor at EPFL in the field of Solid Waste Treatment and head of the Chemical Processes and Materials research group (CPM) at Paul Scherrer Institute (PSI). Joint EPFL-PSI Professorship on Solid Waste Treatment. 2000 - today: Head, Group of Chemical Processes and Materials (CPM) at Paul Scherrer Institut (PSI). In 2009 the LEM unit was closed and the CPM group is now affiliated to the Bioenergy and Catalysis Laboratory (LBK) of the Energy and Environment Research Division (ENE). Since June 2002 permanent position ("tenure"). 1997 - 1999: Senior Scientist. Paul Scherrer Institut (PSI), General Energy Research Department, Element Cycles Section. 1995 - 1997: Research Fellow. Swiss Federal Institute for Environmental Science and Technology (EAWAG), Department of Resource and Waste Management. 1993 - 1995: Post-doc Fellow. University of California Davis, Department of Land, Air, and Water Resources (LAWR). 1990 - 1993: PhD Student. University of Berne, Department of Inorganic, Analytical, and Physical Chemistry. 1989 - 1990: Master Student. University of Berne, Department of Inorganic, Analytical, and Physical Chemistry.