Concept

MOS Technology 8502

Summary
The MOS Technology 8502 is an 8-bit microprocessor designed by MOS Technology and used in the Commodore 128 (C128). It is an improved version of the MOS 6510 used in the Commodore 64 (C64). It was manufactured using the HMOS process, allowing it to have higher transistor density, and lower cost, while dissipating less heat. The 8502 allows the C128 to run at double the clock rate of the C64 with some limitations. Common random access memory (RAM) of the Commodore C64-era allowed accesses at 2 MHz. If the CPU and display chip both shared the same memory to communicate, which was the common solution in the era when RAM was expensive, then one would normally have to have the CPU and display chip chips mediate access to the bus so that only one of them used it at a time, generally by having one pause the other. Assuming the two chips require roughly equal access, that means the chips are paused half of the time, effectively running at 1 MHz. The 6502-family had a feature that eased the design of such systems. The 6502 used a two-phase clock to drive its internal circuitry, but only accessed memory during one of the two phases. That meant the display chip could access memory during alternating clock phases without having to pause the CPU. The major advantage of this style of access is that the two chips do not have to communicate to pause each other, they simply watch the already-existing clock signal present on the 6502's pins. In the original C64, this timing trick was used to allow the VIC-II to interleave its access to main memory with that of the 6510. The 8502 is mostly a conversion of the original 6502 to be fabricated on Intel's HMOS-II process, introduced in 1979 and available for 3rd party use. This process used smaller feature sizes, which allowed the same chip to be produced within a smaller area, and thus be lower cost. As a result of being smaller, the chip also required less energy to run and dissipated less heat. This made it useful in some roles where the original 6502 might not be appropriate.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.