Einstein's thought experimentsA hallmark of Albert Einstein's career was his use of visualized thought experiments (Gedankenexperiment) as a fundamental tool for understanding physical issues and for elucidating his concepts to others. Einstein's thought experiments took diverse forms. In his youth, he mentally chased beams of light. For special relativity, he employed moving trains and flashes of lightning to explain his most penetrating insights. For general relativity, he considered a person falling off a roof, accelerating elevators, blind beetles crawling on curved surfaces and the like.
Bell's theoremBell's theorem is a term encompassing a number of closely related results in physics, all of which determine that quantum mechanics is incompatible with local hidden-variable theories, given some basic assumptions about the nature of measurement. "Local" here refers to the principle of locality, the idea that a particle can only be influenced by its immediate surroundings, and that interactions mediated by physical fields cannot propagate faster than the speed of light.
Einstein–Podolsky–Rosen paradoxThe Einstein–Podolsky–Rosen (EPR) paradox is a thought experiment proposed by physicists Albert Einstein, Boris Podolsky and Nathan Rosen which argues that the description of physical reality provided by quantum mechanics is incomplete. In a 1935 paper titled "Can Quantum-Mechanical Description of Physical Reality be Considered Complete?", they argued for the existence of "elements of reality" that were not part of quantum theory, and speculated that it should be possible to construct a theory containing these hidden variables.
Quantum key distributionQuantum key distribution (QKD) is a secure communication method that implements a cryptographic protocol involving components of quantum mechanics. It enables two parties to produce a shared random secret key known only to them, which then can be used to encrypt and decrypt messages. The process of quantum key distribution is not to be confused with quantum cryptography, as it is the best-known example of a quantum-cryptographic task.
SuperdeterminismSuperdeterminism describes the set of local hidden-variable theories consistent with the results of experiments derived from Bell's theorem which include a local correlation between the measurement settings and the state being measured. Superdeterministic theories are not interpretations of quantum mechanics, but deeper theories which reproduce the predictions of quantum mechanics on average, for which a few toy models have been proposed. In such theories, "the probabilities of quantum theory then become no more mysterious than those used in classical statistical mechanics.
Superluminal communicationSuperluminal communication is a hypothetical process in which information is conveyed at faster-than-light speeds. The current scientific consensus is that faster-than-light communication is not possible, and to date it has not been achieved in any experiment. Superluminal communication other than possibly through wormholes is likely impossible because, in a Lorentz-invariant theory, it could be used to transmit information into the past. This complicates causality, but no theoretical arguments conclusively preclude this possibility.
Spontaneous parametric down-conversionSpontaneous parametric down-conversion (also known as SPDC, parametric fluorescence or parametric scattering) is a nonlinear instant optical process that converts one photon of higher energy (namely, a pump photon), into a pair of photons (namely, a signal photon, and an idler photon) of lower energy, in accordance with the law of conservation of energy and law of conservation of momentum. It is an important process in quantum optics, for the generation of entangled photon pairs, and of single photons.
Quantum cryptographyQuantum cryptography is the science of exploiting quantum mechanical properties to perform cryptographic tasks. The best known example of quantum cryptography is quantum key distribution which offers an information-theoretically secure solution to the key exchange problem. The advantage of quantum cryptography lies in the fact that it allows the completion of various cryptographic tasks that are proven or conjectured to be impossible using only classical (i.e. non-quantum) communication.
Aspect's experimentAspect's experiment was the first quantum mechanics experiment to demonstrate the violation of Bell's inequalities. Its 1982 result allowed for further validation of the quantum entanglement and locality principles. It also offered an experimental answer to Albert Einstein, Boris Podolsky, and Nathan Rosen's paradox which had been proposed about fifty years earlier. The experiment was led by French physicist Alain Aspect at the École supérieure d'optique in Orsay between 1980 and 1982.
Quantum foundationsQuantum foundations is a discipline of science that seeks to understand the most counter-intuitive aspects of quantum theory, reformulate it and even propose new generalizations thereof. Contrary to other physical theories, such as general relativity, the defining axioms of quantum theory are quite ad hoc, with no obvious physical intuition. While they lead to the right experimental predictions, they do not come with a mental picture of the world where they fit.