In metallurgy, refining consists of purifying an impure metal. It is to be distinguished from other processes such as smelting and calcining in that those two involve a chemical change to the raw material, whereas in refining, the final material is usually identical chemically to the original one, only it is purer. The processes used are of many types, including pyrometallurgical and hydrometallurgical techniques.
Cupellation
One ancient process for extracting the silver from lead was cupellation. Lead was melted in a bone ash 'test' or 'cupel' and air blown across the surface. This oxidised the lead to litharge, and also oxidised other base metals present, the silver (and gold if present) remaining unoxidised.
In the 18th century, the process was carried on using a kind of reverberatory furnace, but differing from the usual kind in that air was blown over the surface of the molten lead from bellows or (in the 19th century) blowing cylinders.
Pattison's Process
The Pattinson process was patented by its inventor, Hugh Lee Pattinson, in 1833 who described it as "An improved method for separating silver from lead". It exploited the fact that in molten lead containing traces of silver the first metal to solidify out of the melt is lead, leaving the remaining liquid richer in silver. Pattinson's equipment consisted basically of nothing more complex than a row of up to 13 iron pots, which were heated from below. Some lead, naturally containing a small percentage of silver, was loaded into the central pot and melted. This was then allowed to cool. As the lead solidified it is removed using large perforated iron ladles and moved to the next pot in one direction, and the remaining metal which was now richer in silver was then transferred to the next pot in the opposite direction. The process was repeated from one pot to the next, the lead accumulating in the pot at one end and metal enriched in silver in the pot at the other.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course is designed to cover a number of materials science aspects related to the field of additive manufacturing of metals and alloys, and to provide an in-depth review of corresponding fundament
This course covers the metallurgy, processing and properties of modern high-performance metals and alloys (e.g. advanced steels, Ni-base, Ti-base, High Entropy Alloys etc.). In addition, the principle
Students understand the issues and key factors of a waste recycling process. They know the sorting and recycling technologies of various materials and are able to compare the environmental impact of r
Precious metals are rare, naturally occurring metallic chemical elements of high economic value. Chemically, the precious metals tend to be less reactive than most elements (see noble metal). They are usually ductile and have a high lustre. Historically, precious metals were important as currency but are now regarded mainly as investment and industrial raw materials. Gold, silver, platinum, and palladium each have an ISO 4217 currency code. The best known precious metals are the coinage metals, which are gold and silver.
Metallurgy is a domain of materials science and engineering that studies the physical and chemical behavior of metallic elements, their inter-metallic compounds, and their mixtures, which are known as alloys. Metallurgy encompasses both the science and the technology of metals; that is, the way in which science is applied to the production of metals, and the engineering of metal components used in products for both consumers and manufacturers. Metallurgy is distinct from the craft of metalworking.
Transition metal catalyzed C-H activation plays a major role in modern organic chemistry, affording mild, selective and atom-efficient protocols. Most of current developments in the field rely on the use of several precious metals. As a consequence, an int ...
EPFL2022
, , , , ,
For the first time, a high-density amorphous and crack-free bulk metallic glass (BMG) based on a precious metal (PdCuNiP) was produced via additive manufacturing (AM). Laser powder-bed fusion (LPBF) was used for the fabrication of the samples, and led to a ...
The 2-pyrone motif occurs frequently in bioactive natural products and is appreciated as synthetic intermediates. However, only few methods allow for diversifying functional group modifications on this relevant heterocycle. The distinct properties of 1-alk ...