In the interpretation of quantum mechanics, a local hidden-variable theory is a hidden-variable theory that satisfies the condition of being consistent with local realism. This definition restricts all types of those theories that attempt to account for the probabilistic features of quantum mechanics via the mechanism of underlying inaccessible variables with the additional requirement that distant events be independent, ruling out instantaneous (that is, faster-than-light) interactions between separate events.
The mathematical implications of a local hidden-variable theory in regard to the phenomenon of quantum entanglement were explored by physicist John Stewart Bell, who in 1964 proved that broad classes of local hidden-variable theories cannot reproduce the correlations between measurement outcomes that quantum mechanics predicts. The most notable exception is superdeterminism. Superdeterministic hidden-variable theories can be local and yet be compatible with observations.
Bell's theorem starts with the implication of the principle of local realism, that separated measurement processes are independent. Based on this premise, the probability of a coincidence between separated measurements of particles with correlated (e.g. identical or opposite) orientation properties can be written:
where is the probability of detection of particle with hidden variable by detector , set in direction , and similarly is the probability at detector , set in direction , for particle , sharing the same value of . The source is assumed to produce particles in the state with probability .
Using (), various Bell inequalities can be derived, which provide limits on the possible behaviour of local hidden-variable models.
When John Stewart Bell originally derived his inequality, it was in relation to pairs of entangled spin-1/2 particles, every one of those emitted being detected. Bell showed that when detectors are rotated with respect to each other, local realist models must yield a correlation curve that is bounded by a straight line between maxima (detectors aligned), whereas the quantum correlation curve is a cosine relationship.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Le cours donne une introduction à la théorie des EDO, y compris existence de solutions locales/globales, comportement asymptotique, étude de la stabilité de points stationnaires et applications, en pa
After recapping the basics of quantum theory from an information
theoretic perspective, we will cover more advanced topics in
quantum information theory. This includes introducing measures of quantum
A broad view of the diverse aspects of the field is provided: quantum physics, communication, quantum computation, simulation of physical systems, physics of qubit platforms, hardware technologies. St
Aspect's experiment was the first quantum mechanics experiment to demonstrate the violation of Bell's inequalities. Its 1982 result allowed for further validation of the quantum entanglement and locality principles. It also offered an experimental answer to Albert Einstein, Boris Podolsky, and Nathan Rosen's paradox which had been proposed about fifty years earlier. The experiment was led by French physicist Alain Aspect at the École supérieure d'optique in Orsay between 1980 and 1982.
A Bell test, also known as Bell inequality test or Bell experiment, is a real-world physics experiment designed to test the theory of quantum mechanics in relation to Albert Einstein's concept of local realism. Named for John Stewart Bell, the experiments test whether or not the real world satisfies local realism, which requires the presence of some additional local variables (called "hidden" because they are not a feature of quantum theory) to explain the behavior of particles like photons and electrons.
Superdeterminism describes the set of local hidden-variable theories consistent with the results of experiments derived from Bell's theorem which include a local correlation between the measurement settings and the state being measured. Superdeterministic theories are not interpretations of quantum mechanics, but deeper theories which reproduce the predictions of quantum mechanics on average, for which a few toy models have been proposed. In such theories, "the probabilities of quantum theory then become no more mysterious than those used in classical statistical mechanics.
Zero knowledge plays a central role in cryptography and complexity. The seminal work of Ben-Or et al. (STOC 1988) shows that zero knowledge can be achieved unconditionally for any language in NEXP, as long as one is willing to make a suitable physical assu ...
Here we discuss "hidden variables", which are typically introduced during an experiment as a consequence of the application of two independent variables together to create a stimulus. With increased sophistication in modern chemical biology tools and relat ...
Recently, a new adaptive path interpolation method has been developed as a simple and versatile scheme to calculate exactly the asymptotic mutual information of Bayesian inference problems defined on dense factor graphs. These include random linear and gen ...