Hypereosinophilic syndrome is a disease characterized by a persistently elevated eosinophil count (≥ 1500 eosinophils/mm3) in the blood for at least six months without any recognizable cause, with involvement of either the heart, nervous system, or bone marrow.
HES is a diagnosis of exclusion, after clonal eosinophilia (such as FIP1L1-PDGFRA-fusion induced hypereosinophelia and leukemia) and reactive eosinophilia (in response to infection, autoimmune disease, atopy, hypoadrenalism, tropical eosinophilia, or cancer) have been ruled out.
There are some associations with chronic eosinophilic leukemia as it shows similar characteristics and genetic defects.
If left untreated, HES is progressive and fatal. It is treated with glucocorticoids such as prednisone. The addition of the monoclonal antibody mepolizumab may reduce the dose of glucocorticoids.
As HES affects many organs at the same time, symptoms may be numerous. Some possible symptoms a patient may present with include:
Cardiomyopathy
Skin lesions
Thromboembolic disease
Pulmonary disease
Neuropathy
Hepatosplenomegaly
Reduced ventricular size
Atopic eczema
Numerous techniques are used to diagnose hypereosinophilic syndrome, of which the most important is blood testing. In HES, the eosinophil count is greater than 1.5 × 109/L. On some smears the eosinophils may appear normal in appearance, but morphologic abnormalities, such as a lowering of granule numbers and size, can be observed. Roughly 50% of patients with HES also have anaemia.
Secondly, various imaging and diagnostic technological methods are utilised to detect defects to the heart and other organs, such as valvular dysfunction and arrhythmias by means of echocardiography. Chest radiographs may indicate pleural effusions and/or fibrosis, and neurological tests such as CT scans can show strokes and increased cerebrospinal fluid pressure.
A proportion of patients have a mutation involving the PDGFRA and FIP1L1 genes on the fourth chromosome, leading to a tyrosine kinase fusion protein.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Eosinophilic myocarditis is inflammation in the heart muscle that is caused by the infiltration and destructive activity of a type of white blood cell, the eosinophil. Typically, the disorder is associated with hypereosinophilia, i.e. an eosinophil blood cell count greater than 1,500 per microliter (normal 100 to 400 per microliter). It is distinguished from non-eosinophilic myocarditis, which is heart inflammation caused by other types of white blood cells, i.e.
Lymphocyte-variant hypereosinophilia is a rare disorder in which eosinophilia or hypereosinophilia (i.e. a large or extremely large increase in the number of eosinophils in the blood circulation) is caused by an aberrant population of lymphocytes. These aberrant lymphocytes function abnormally by stimulating the proliferation and maturation of bone marrow eosinophil-precursor cells termed colony forming unit-Eosinophils or CFU-Eos.
Eosinophilia is a condition in which the eosinophil count in the peripheral blood exceeds . Hypereosinophilia is an elevation in an individual's circulating blood eosinophil count above 1.5 × 109/L (i.e. 1,500/μL). The hypereosinophilic syndrome is a sustained elevation in this count above 1.5 × 109/L (i.e. 1,500/μL) that is also associated with evidence of eosinophil-based tissue injury. Eosinophils usually account for less than 7% of the circulating leukocytes.
Adipose tissue eosinophils (ATEs) are important in the control of obesity-associated inflammation and metabolic disease. However, the way in which ageing impacts the regulatory role of ATEs remains unknown. Here, we show that ATEs undergo major age-related ...
Eosinophils are granulocytes, typically implicated as end-stage effector cells in type-II immune responses. They are capable of producing a wide array of pre-formed molecules which render them with vast potential to influence a wide variety of processes. N ...
Eosinophils are granulocytes and belong to the innate arm of immunity. Eosinophils can be in different basal or activation states and depending on which type of activation is applied, they exert different effector functions. These multi-functional cells ha ...