Intermediate representationAn intermediate representation (IR) is the data structure or code used internally by a compiler or virtual machine to represent source code. An IR is designed to be conducive to further processing, such as optimization and translation. A "good" IR must be accurate – capable of representing the source code without loss of information – and independent of any particular source or target language. An IR may take one of several forms: an in-memory data structure, or a special tuple- or stack-based code readable by the program.
Java bytecodeIn computing, Java bytecode is the bytecode-structured instruction set of the Java virtual machine (JVM), a virtual machine that enables a computer to run programs written in the Java programming language and several other programming languages, see List of JVM languages. A Java programmer does not need to be aware of or understand Java bytecode at all. However, as suggested in the IBM developerWorks journal, "Understanding bytecode and what bytecode is likely to be generated by a Java compiler helps the Java programmer in the same way that knowledge of assembly helps the C or C++ programmer.
Icon (programming language)Icon is a very high-level programming language based on the concept of "goal-directed execution" in which code returns a "success" along with valid values, or a "failure", indicating that there is no valid data to return. The success and failure of a given block of code is used to direct further processing, whereas conventional languages would typically use boolean logic written by the programmer to achieve the same ends. Because the logic for basic control structures is often implicit in Icon, common tasks can be completed with less explicit code.
Source codeIn computing, source code, or simply code, is any collection of text, with or without comments, written using a human-readable programming language, usually as plain text. The source code of a program is specially designed to facilitate the work of computer programmers, who specify the actions to be performed by a computer mostly by writing source code. The source code is often transformed by an assembler or compiler into binary machine code that can be executed by the computer.
Runtime systemIn computer programming, a runtime system or runtime environment is a sub-system that exists both in the computer where a program is created, as well as in the computers where the program is intended to be run. The name comes from the compile time and runtime division from compiled languages, which similarly distinguishes the computer processes involved in the creation of a program (compilation) and its execution in the target machine (the run time). Most programming languages have some form of runtime system that provides an environment in which programs run.
APIAn () is a way for two or more computer programs to communicate with each other. It is a type of software interface, offering a service to other pieces of software. A document or standard that describes how to build or use such a connection or interface is called an . A computer system that meets this standard is said to or an API. The term API may refer either to the specification or to the implementation. In contrast to a user interface, which connects a computer to a person, an application programming interface connects computers or pieces of software to each other.
Parrot virtual machineParrot was a register-based process virtual machine designed to run dynamic languages efficiently. It is possible to compile Parrot assembly language and Parrot intermediate representation (PIR, an intermediate language) to Parrot bytecode and execute it. Parrot is free and open-source software. Parrot was started by the Perl community and is developed with help from the open-source and free software communities. As a result, it is focused on license compatibility with Perl (Artistic License 2.
Just-in-time compilationIn computing, just-in-time (JIT) compilation (also dynamic translation or run-time compilations) is compilation (of computer code) during execution of a program (at run time) rather than before execution. This may consist of source code translation but is more commonly bytecode translation to machine code, which is then executed directly. A system implementing a JIT compiler typically continuously analyses the code being executed and identifies parts of the code where the speedup gained from compilation or recompilation would outweigh the overhead of compiling that code.
TclTcl (pronounced "tickle" or as an initialism) is a high-level, general-purpose, interpreted, dynamic programming language. It was designed with the goal of being very simple but powerful. Tcl casts everything into the mold of a command, even programming constructs like variable assignment and procedure definition. Tcl supports multiple programming paradigms, including object-oriented, imperative, functional, and procedural styles. It is commonly used embedded into C applications, for rapid prototyping, scripted applications, GUIs, and testing.
Reflective programmingIn computer science, reflective programming or reflection is the ability of a process to examine, introspect, and modify its own structure and behavior. The earliest computers were programmed in their native assembly languages, which were inherently reflective, as these original architectures could be programmed by defining instructions as data and using self-modifying code. As the bulk of programming moved to higher-level compiled languages such as Algol, Cobol, Fortran, Pascal, and C, this reflective ability largely disappeared until new programming languages with reflection built into their type systems appeared.