Plutonium-241Plutonium-241 (241Pu or Pu-241) is an isotope of plutonium formed when plutonium-240 captures a neutron. Like some other plutonium isotopes (especially 239Pu), 241Pu is fissile, with a neutron absorption cross section about one-third greater than that of 239Pu, and a similar probability of fissioning on neutron absorption, around 73%. In the non-fission case, neutron capture produces plutonium-242. In general, isotopes with an odd number of neutrons are both more likely to absorb a neutron, and more likely to undergo fission on neutron absorption, than isotopes with an even number of neutrons.
Allotropes of plutoniumPlutonium occurs in a variety of allotropes, even at ambient pressure. These allotropes differ widely in crystal structure and density; the α and δ allotropes differ in density by more than 25% at constant pressure. Plutonium normally has six allotropes and forms a seventh (zeta, ζ) under high temperature and a limited pressure range. These allotropes have very similar energy levels but significantly varying densities and crystal structures.
SilicideA silicide is a type of chemical compound that combines silicon and a usually more electropositive element. Silicon is more electropositive than carbon. Silicides are structurally closer to borides than to carbides. Similar to borides and carbides, the composition of silicides cannot be easily specified as covalent molecules. The chemical bonds in silicides range from conductive metal-like structures to covalent or ionic. Silicides of all non-transition metals have been described except beryllium.
Przybylski's StarPrzybylski's Star (pronounced pʃᵻˈbɪlskiz or ʃᵻˈbɪlskiz), or HD 101065, is a rapidly oscillating Ap star at roughly from the Sun in the southern constellation of Centaurus. It has a unique spectrum showing over-abundances of most rare-earth elements, including some short-lived radioactive isotopes, but under-abundances of more common elements such as iron. In 1961, the Polish-Australian astronomer Antoni Przybylski discovered that this star had a peculiar spectrum that would not fit into the standard framework for stellar classification.
UranylThe uranyl ion is an oxycation of uranium in the oxidation state +6, with the chemical formula UO22+. It has a linear structure with short U–O bonds, indicative of the presence of multiple bonds between uranium and oxygen. Four or more ligands may be bound to the uranyl ion in an equatorial plane around the uranium atom. The uranyl ion forms many complexes, particularly with ligands that have oxygen donor atoms. Complexes of the uranyl ion are important in the extraction of uranium from its ores and in nuclear fuel reprocessing.