Summary
Electrolyte imbalance, or water-electrolyte imbalance, is an abnormality in the concentration of electrolytes in the body. Electrolytes play a vital role in maintaining homeostasis in the body. They help to regulate heart and neurological function, fluid balance, oxygen delivery, acid–base balance and much more. Electrolyte imbalances can develop by consuming too little or too much electrolyte as well as excreting too little or too much electrolyte. Examples of electrolytes include: calcium, chloride, magnesium, phosphate, potassium, and sodium. Electrolyte disturbances are involved in many disease processes, and are an important part of patient management in medicine. The causes, severity, treatment, and outcomes of these disturbances can differ greatly depending on the implicated electrolyte. The most serious electrolyte disturbances involve abnormalities in the levels of sodium, potassium or calcium. Other electrolyte imbalances are less common and often occur in conjunction with major electrolyte changes. The kidney is the most important organ in maintaining appropriate fluid and electrolyte balance, but other factors such as hormonal changes and physiological stress play a role. Calcium, magnesium, potassium, and sodium ions are cations (+), while chloride, and phosphate ions are anions (−). Chronic laxative abuse or severe diarrhea or vomiting can lead to dehydration and electrolyte imbalance. People with malnutrition are at especially high risk for an electrolyte imbalance. Severe electrolyte imbalances must be treated carefully as there are risks with overcorrecting too quickly, which can result in arrhythmias, brain herniation, or refeeding syndrome depending on the cause of imbalance. Electrolytes are important because they are what cells (especially nerve, heart and muscle cells) use to maintain voltages across their cell membranes. Electrolytes have different functions, and an important one is to carry electrical impulses between cells. Kidneys work to keep the electrolyte concentrations in blood constant despite changes in the body.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.