Summary
False color (or pseudo color) refers to a group of color rendering methods used to display images in color which were recorded in the visible or non-visible parts of the electromagnetic spectrum. A false-color image is an image that depicts an object in colors that differ from those a photograph (a true-color image) would show. In this image, colors have been assigned to three different wavelengths that human eyes cannot normally see. In addition, variants of false color such as pseudocolor, density slicing, and choropleths are used for information visualization of either data gathered by a single grayscale channel or data not depicting parts of the electromagnetic spectrum (e.g. elevation in relief maps or tissue types in magnetic resonance imaging). The concept behind true color can help in understanding false color. An image is called a true-color image when it offers a natural color rendition, or when it comes close to it. This means that the colors of an object in an image appear to a human observer the same way as if this same observer were to directly view the object: A green tree appears green in the image, a red apple red, a blue sky blue, and so on. When applied to black-and-white images, true-color means that the perceived lightness of an object is preserved in its depiction. Absolute true-color rendering is impossible. There are three major sources of color error (metameric failure): Different spectral sensitivities of the human eye and of an image capture device (e.g. a camera). Different spectral emissions / reflections of the object and of the image render process (e.g. a printer or monitor). Differences in spectral irradiance in the case of reflective images (e.g. photo prints) or reflective objects – see color rendering index (CRI) for details. The result of a metameric failure would be for example an image of a green tree which shows a different shade of green than the tree itself, a different shade of red for a red apple, a different shade of blue for the blue sky, and so on. Color management (e.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (18)
Mars
Mars is the fourth planet and the furthest terrestrial planet from the Sun. The reddish color of its surface is due to finely grained iron(III) oxide dust in the soil, giving it the nickname "the Red Planet". Mars's radius is second smallest among the planets in the Solar System at . The Martian dichotomy is visible on the surface: on average, the terrain on Mars's northern hemisphere is flatter and lower than its southern hemisphere. Mars has a thin atmosphere made primarily of carbon dioxide and two irregularly shaped natural satellites: Phobos and Deimos.
Infrared photography
Top: tree photographed in the near infrared range. Bottom: same tree in the visible part of the spectrum. In infrared photography, the film or used is sensitive to infrared light. The part of the spectrum used is referred to as near-infrared to distinguish it from far-infrared, which is the domain of thermal imaging. Wavelengths used for photography range from about 700 nm to about 900 nm.
False color
False color (or pseudo color) refers to a group of color rendering methods used to display images in color which were recorded in the visible or non-visible parts of the electromagnetic spectrum. A false-color image is an image that depicts an object in colors that differ from those a photograph (a true-color image) would show. In this image, colors have been assigned to three different wavelengths that human eyes cannot normally see.
Show more
Related lectures (11)
Thymio's Colorful Obstacle Course
Explores programming Thymio to change colors when encountering obstacles.
Linear Algebra: Properties and Operations
Explores subset properties, contraposition, and equivalence in linear algebra.
Thymio: Color Distance Description
Covers programming Thymio to change colors based on obstacle distance.
Show more