Magnetic circular dichroism (MCD) is the differential absorption of left and right circularly polarized (LCP and RCP) light, induced in a sample by a strong magnetic field oriented parallel to the direction of light propagation. MCD measurements can detect transitions which are too weak to be seen in conventional optical absorption spectra, and it can be used to distinguish between overlapping transitions. Paramagnetic systems are common analytes, as their near-degenerate magnetic sublevels provide strong MCD intensity that varies with both field strength and sample temperature. The MCD signal also provides insight into the symmetry of the electronic levels of the studied systems, such as metal ion sites. It was first shown by Faraday that optical activity (the Faraday effect) could be induced in matter by a longitudinal magnetic field (a field in the direction of light propagation). The development of MCD really began in the 1930s when a quantum mechanical theory of MOR (magnetic optical rotatory dispersion) in regions outside absorption bands was formulated. The expansion of the theory to include MCD and MOR effects in the region of absorptions, which were referred to as “anomalous dispersions” was developed soon thereafter. There was, however, little effort made to refine MCD as a modern spectroscopic technique until the early 1960s. Since that time there have been numerous studies of MCD spectra for a very large variety of samples, including stable molecules in solutions, in isotropic solids, and in the gas phase, as well as unstable molecules entrapped in noble gas matrices. More recently, MCD has found useful application in the study of biologically important systems including metalloenzymes and proteins containing metal centers. In natural optical activity, the difference between the LCP light and the RCP light is caused by the asymmetry of the molecules (i.e. chiral molecules). Because of the handedness of the molecule, the absorption of the LCP light would be different from the RCP light.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (2)
PHYS-717: Simulations of Early Universe Magnetohydrodynamics
The course will cover some fundamentals of magnetohydrodynamics (MHD) theory with hands-on sessions to learn the basics of MHD simulations using the open-source Pencil Code (http://pencil-code.nordita
MSE-670: Advanced Microscopy for Magnetic Materials
Theoretical and practical expertise is gained about the microscopy of spin structures and magnetic configuiations down to the sub-nm length and sub-ns time scales such as transmission electron microsc
Related lectures (16)
Spectroscopy: Light and Molecules
Explores Spectroscopy techniques, including ORD, CD, Raman Spectroscopy, and FTIR, for analyzing molecular interactions with light and characterizing samples.
Spectroscopy with Light
Explores the physics of light, covering electromagnetic waves, particles, interference, and the wave-particle dualism.
X-ray Magnetic Imaging Techniques
Covers x-ray magnetic imaging techniques, including XMCD, XRMS, and x-ray optics, for studying magnetic materials and domains.
Show more
Related publications (121)
Related concepts (2)
Circular dichroism
Circular dichroism (CD) is dichroism involving circularly polarized light, i.e., the differential absorption of left- and right-handed light. Left-hand circular (LHC) and right-hand circular (RHC) polarized light represent two possible spin angular momentum states for a photon, and so circular dichroism is also referred to as dichroism for spin angular momentum. This phenomenon was discovered by Jean-Baptiste Biot, Augustin Fresnel, and Aimé Cotton in the first half of the 19th century.
Optical rotation
Optical rotation, also known as polarization rotation or circular birefringence, is the rotation of the orientation of the plane of polarization about the optical axis of linearly polarized light as it travels through certain materials. Circular birefringence and circular dichroism are the manifestations of optical activity. Optical activity occurs only in chiral materials, those lacking microscopic mirror symmetry. Unlike other sources of birefringence which alter a beam's state of polarization, optical activity can be observed in fluids.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.