The Intel 8087, announced in 1980, was the first floating-point coprocessor for the 8086 line of microprocessors. The purpose of the chip was to speed up floating-point arithmetic operations, such as addition, subtraction, multiplication, division, and square root. It also computes transcendental functions such as exponential, logarithmic or trigonometric calculations. The performance enhancements were from approximately 20% to over 500%, depending on the specific application. The 8087 could perform about 50,000 FLOPS using around 2.4 watts.
The 8087 was an advanced integrated circuit, pushing the limits of manufacturing technology of the period. Basic operations on the 8087 such as addition and subtraction can take over 100 machine cycles to execute and some instructions exceed 1000 cycles. The chip lacks a hardware multiplier and implements calculations using the CORDIC algorithm.
Sales of the 8087 received a significant boost when a coprocessor socket was included on the 1981 IBM PC motherboard. Development of the 8087 led to the IEEE 754-1985 standard for floating-point arithmetic. There were later x87 coprocessors for the 80186, 80286, 80386, and 80386SX processors. Starting with the 80486, the later Intel x86 processors did not use a separate floating-point coprocessor; floating-point functions were integrated with the processor.
Intel had previously manufactured the 8231 Arithmetic processing unit, and the 8232 Floating Point Processor. These were designed for use with 8080 or similar processors and used an 8-bit data bus. They were interfaced to a host system either through programmed I/O or a DMA controller.
The 8087 was initially conceived by Bill Pohlman, the engineering manager at Intel who oversaw the development of the 8086 chip. Bill took steps to be sure that the 8086 chip could support a yet-to-be-developed math chip.
In 1977 Pohlman got the go ahead to design the 8087 math chip. Bruce Ravenel was assigned as architect, and John Palmer was hired to be co-architect and mathematician for the project.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
x87 is a floating-point-related subset of the x86 architecture instruction set. It originated as an extension of the 8086 instruction set in the form of optional floating-point coprocessors that works in tandem with corresponding x86 CPUs. These microchips have names ending in "87". This is also known as the NPX (Numeric Processor eXtension). Like other extensions to the basic instruction set, x87 instructions are not strictly needed to construct working programs, but provide hardware and microcode implementations of common numerical tasks, allowing these tasks to be performed much faster than corresponding machine code routines can.
The IEEE Standard for Floating-Point Arithmetic (IEEE 754) is a technical standard for floating-point arithmetic established in 1985 by the Institute of Electrical and Electronics Engineers (IEEE). The standard addressed many problems found in the diverse floating-point implementations that made them difficult to use reliably and portably. Many hardware floating-point units use the IEEE 754 standard.
Pentium is a series of x86 architecture-compatible microprocessors produced by Intel. The original Pentium was first released on March 22, 1993. Pentium-branded processors released from 2009 to 2022 are considered entry-level products that Intel rates as "two stars", meaning that they are above the low-end Atom and Celeron series, but below the faster Intel Core lineup and workstation/server Xeon series. These later Pentium processors have little more than their name in common with earlier Pentiums, which were Intel's flagship processor for over a decade until the introduction of the Intel Core line in 2006.
The slowdown of Moore's law, which has been the driving force of the electronics industry over the last 5 decades, is causing serious problem to Integrated Circuits (ICs) improvements. Technology scaling is becoming more and more complex and fabrication co ...
EPFL2018
,
This paper describes an image acquisition and a processing system based on a new coprocessor architecture designed for CMOS sensor imaging. The system exploits the full potential CMOS selective access imaging technology because the coprocessor unit is inte ...
Mobile communication devices now available on the market, such as so-called smartphones, are far more advanced than the first cellular phones that became very popular one decade ago. In addition to their historical purpose, namely enabling wireless vocal c ...