**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Jet bundle

Summary

In differential topology, the jet bundle is a certain construction that makes a new smooth fiber bundle out of a given smooth fiber bundle. It makes it possible to write differential equations on sections of a fiber bundle in an invariant form. Jets may also be seen as the coordinate free versions of Taylor expansions.
Historically, jet bundles are attributed to Charles Ehresmann, and were an advance on the method (prolongation) of Élie Cartan, of dealing geometrically with higher derivatives, by imposing differential form conditions on newly introduced formal variables. Jet bundles are sometimes called sprays, although sprays usually refer more specifically to the associated vector field induced on the corresponding bundle (e.g., the geodesic spray on Finsler manifolds.)
Since the early 1980s, jet bundles have appeared as a concise way to describe phenomena associated with the derivatives of maps, particularly those associated with the calculus of variations. Consequently, the jet bundle is now recognized as the correct domain for a geometrical covariant field theory and much work is done in general relativistic formulations of fields using this approach.
Jet (mathematics)
Suppose M is an m-dimensional manifold and that (E, π, M) is a fiber bundle. For p ∈ M, let Γ(p) denote the set of all local sections whose domain contains p. Let I = (I(1), I(2), ..., I(m)) be a multi-index (an m-tuple of non-negative integers, not necessarily in ascending order), then define:
Define the local sections σ, η ∈ Γ(p) to have the same r-jet at p if
The relation that two maps have the same r-jet is an equivalence relation. An r-jet is an equivalence class under this relation, and the r-jet with representative σ is denoted . The integer r is also called the order of the jet, p is its source and σ(p) is its target.
The r-th jet manifold of π is the set
We may define projections πr and πr,0 called the source and target projections respectively, by
If 1 ≤ k ≤ r, then the k-jet projection is the function πr,k defined by
From this definition, it is clear that πr = π o πr,0 and that if 0 ≤ m ≤ k, then πr,m = πk,m o πr,k.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading

Related MOOCs

Loading

Related courses

Related publications

Related units

Related MOOCs

Related people

Related concepts (23)

No results

No results

Related lectures (3)

No results

No results

No results

Jet bundle

In differential topology, the jet bundle is a certain construction that makes a new smooth fiber bundle out of a given smooth fiber bundle. It makes it possible to write differential equations on sections of a fiber bundle in an invariant form. Jets may also be seen as the coordinate free versions of Taylor expansions. Historically, jet bundles are attributed to Charles Ehresmann, and were an advance on the method (prolongation) of Élie Cartan, of dealing geometrically with higher derivatives, by imposing differential form conditions on newly introduced formal variables.

Differentiable manifold

In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One may then apply ideas from calculus while working within the individual charts, since each chart lies within a vector space to which the usual rules of calculus apply. If the charts are suitably compatible (namely, the transition from one chart to another is differentiable), then computations done in one chart are valid in any other differentiable chart.

Jet (mathematics)

In mathematics, the jet is an operation that takes a differentiable function f and produces a polynomial, the truncated Taylor polynomial of f, at each point of its domain. Although this is the definition of a jet, the theory of jets regards these polynomials as being abstract polynomials rather than polynomial functions. This article first explores the notion of a jet of a real valued function in one real variable, followed by a discussion of generalizations to several real variables.

Integration Exercise

Covers the process of calculating new bounds for integration and solving equations involving integrals and derivatives.

Holography in Classical Gravity

Explores hints of holography in classical black hole thermodynamics.

Hamiltonian dynamics on convex polytopes

Explores Hamiltonian dynamics on convex polytopes, covering symplectic capacities, EHZ capacity, and systolic ratio maximizers.