Functional equationIn mathematics, a functional equation is, in the broadest meaning, an equation in which one or several functions appear as unknowns. So, differential equations and integral equations are functional equations. However, a more restricted meaning is often used, where a functional equation is an equation that relates several values of the same function.
Solution setIn mathematics, a solution set is the set of values that satisfy a given set of equations or inequalities. For example, for a set {f_i} of polynomials over a ring R, the solution set is the subset of R on which the polynomials all vanish (evaluate to 0), formally {x\in R: \forall i\in I, f_i(x)=0} The feasible region of a constrained optimization problem is the solution set of the constraints. The solution set of the single equation is the set {0}.
Linear equation over a ringIn algebra, linear equations and systems of linear equations over a field are widely studied. "Over a field" means that the coefficients of the equations and the solutions that one is looking for belong to a given field, commonly the real or the complex numbers. This article is devoted to the same problems where "field" is replaced by "commutative ring", or, typically "Noetherian integral domain". In the case of a single equation, the problem splits in two parts.
UnivariateIn mathematics, a univariate object is an expression, equation, function or polynomial involving only one variable. Objects involving more than one variable are multivariate. In some cases the distinction between the univariate and multivariate cases is fundamental; for example, the fundamental theorem of algebra and Euclid's algorithm for polynomials are fundamental properties of univariate polynomials that cannot be generalized to multivariate polynomials.
InequationIn mathematics, an inequation is a statement that an inequality holds between two values. It is usually written in the form of a pair of expressions denoting the values in question, with a relational sign between them indicating the specific inequality relation. Some examples of inequations are: In some cases, the term "inequation" can be considered synonymous to the term "inequality", while in other cases, an inequation is reserved only for statements whose inequality relation is "not equal to" (≠).
The Nine Chapters on the Mathematical ArtThe Nine Chapters on the Mathematical Art is a Chinese mathematics book, composed by several generations of scholars from the 10th–2nd century BCE, its latest stage being from the 2nd century CE. This book is one of the earliest surviving mathematical texts from China, the first being the Suan shu shu (202 BCE – 186 BCE) and Zhoubi Suanjing (compiled throughout the Han until the late 2nd century CE).
Cubic plane curveIn mathematics, a cubic plane curve is a plane algebraic curve C defined by a cubic equation F(x, y, z) = 0 applied to homogeneous coordinates (x:y:z) for the projective plane; or the inhomogeneous version for the affine space determined by setting z = 1 in such an equation. Here F is a non-zero linear combination of the third-degree monomials x^3, y^3, z^3, x^2 y, x^2 z, y^2 x, y^2 z, z^2 x, z^2 y, xyz These are ten in number; therefore the cubic curves form a projective space of dimension 9, over any given field K.
Overdetermined systemIn mathematics, a system of equations is considered overdetermined if there are more equations than unknowns. An overdetermined system is almost always inconsistent (it has no solution) when constructed with random coefficients. However, an overdetermined system will have solutions in some cases, for example if some equation occurs several times in the system, or if some equations are linear combinations of the others. The terminology can be described in terms of the concept of constraint counting.
Theory of equationsIn algebra, the theory of equations is the study of algebraic equations (also called "polynomial equations"), which are equations defined by a polynomial. The main problem of the theory of equations was to know when an algebraic equation has an algebraic solution. This problem was completely solved in 1830 by Évariste Galois, by introducing what is now called Galois theory. Before Galois, there was no clear distinction between the "theory of equations" and "algebra".