Johann Heinrich Lambert (ˈlambɛɐ̯t, Jean-Henri Lambert in French; 26 or 28 August 1728 – 25 September 1777) was a polymath from the Republic of Mulhouse, generally referred to as either Swiss or French, who made important contributions to the subjects of mathematics, physics (particularly optics), philosophy, astronomy and map projections.
Lambert was born in 1728 into a Huguenot family in the city of Mulhouse (now in Alsace, France), at that time a city-state allied to Switzerland. Some sources give 26 August as his birth date and others 28 August. Leaving school at 12, he continued to study in his free time while undertaking a series of jobs. These included assistant to his father (a tailor), a clerk at a nearby iron works, a private tutor, secretary to the editor of Basler Zeitung and, at the age of 20, private tutor to the sons of Count Salis in Chur. Travelling Europe with his charges (1756–1758) allowed him to meet established mathematicians in the German states, The Netherlands, France and the Italian states. On his return to Chur he published his first books (on optics and cosmology) and began to seek an academic post. After a few short posts he was rewarded (1763) by an invitation to a position at the Prussian Academy of Sciences in Berlin, where he gained the sponsorship of Frederick II of Prussia, and became a friend of Euler. In this stimulating and financially stable environment, he worked prodigiously until his death in 1777.
Lambert was the first to introduce hyperbolic functions into trigonometry. Also, he made conjectures about non-Euclidean space. Lambert is credited with the first proof that π is irrational using a generalized continued fraction for the function tan x. Euler believed the conjecture but could not prove that π was irrational, and it is speculated that Aryabhata also believed this, in 500 CE. Lambert also devised theorems about conic sections that made the calculation of the orbits of comets simpler.
Lambert devised a formula for the relationship between the angles and the area of hyperbolic triangles.