HaskellHaskell (ˈhæskəl) is a general-purpose, statically-typed, purely functional programming language with type inference and lazy evaluation. Designed for teaching, research, and industrial applications, Haskell has pioneered a number of programming language features such as type classes, which enable type-safe operator overloading, and monadic input/output (IO). It is named after logician Haskell Curry. Haskell's main implementation is the Glasgow Haskell Compiler (GHC).
Clean (programming language)Clean is a general-purpose purely functional computer programming language. It was called the Concurrent Clean System, then the Clean System, later just Clean. Clean has been developed by a group of researchers from the Radboud University in Nijmegen since 1987. The language Clean first appeared in 1987. Although development of the language has slowed, some researchers are still working in the language. In 2018, a spin-off company was founded that uses Clean.
Algebraic data typeIn computer programming, especially functional programming and type theory, an algebraic data type (ADT) is a kind of composite type, i.e., a type formed by combining other types. Two common classes of algebraic types are product types (i.e., tuples and records) and sum types (i.e., tagged or disjoint unions, coproduct types or variant types). The values of a product type typically contain several values, called fields. All values of that type have the same combination of field types.
Recursive data typeIn computer programming languages, a recursive data type (also known as a recursively-defined, inductively-defined or inductive data type) is a data type for values that may contain other values of the same type. Data of recursive types are usually viewed as directed graphs. An important application of recursion in computer science is in defining dynamic data structures such as Lists and Trees. Recursive data structures can dynamically grow to an arbitrarily large size in response to runtime requirements; in contrast, a static array's size requirements must be set at compile time.
ISWIMISWIM (acronym for If you See What I Mean) is an abstract computer programming language (or a family of languages) devised by Peter Landin and first described in his article "The Next 700 Programming Languages", published in the Communications of the ACM in 1966. Although not implemented, it has proved very influential in the development of programming languages, especially functional programming languages such as SASL, Miranda, ML, Haskell and their successors, and dataflow programming languages like Lucid.
Programming language theoryProgramming language theory (PLT) is a branch of computer science that deals with the design, implementation, analysis, characterization, and classification of formal languages known as programming languages. Programming language theory is closely related to other fields including mathematics, software engineering, and linguistics. There are a number of academic conferences and journals in the area. History of programming languages and Programming language#History In some ways, the history of programming language theory predates even the development of programming languages themselves.
Lazy evaluationIn programming language theory, lazy evaluation, or call-by-need, is an evaluation strategy which delays the evaluation of an expression until its value is needed (non-strict evaluation) and which also avoids repeated evaluations (by the use of sharing). The benefits of lazy evaluation include: The ability to define control flow (structures) as abstractions instead of primitives. The ability to define potentially infinite data structures. This allows for more straightforward implementation of some algorithms.
Type inferenceType inference refers to the automatic detection of the type of an expression in a formal language. These include programming languages and mathematical type systems, but also natural languages in some branches of computer science and linguistics. Types in a most general view can be associated to a designated use suggesting and restricting the activities possible for an object of that type. Many nouns in language specify such uses. For instance, the word leash indicates a different use than the word line.
Type systemIn computer programming, a type system is a logical system comprising a set of rules that assigns a property called a type (for example, integer, floating point, string) to every "term" (a word, phrase, or other set of symbols). Usually the terms are various constructs of a computer program, such as variables, expressions, functions, or modules. A type system dictates the operations that can be performed on a term. For variables, the type system determines the allowed values of that term.
CurryingIn mathematics and computer science, currying is the technique of translating the evaluation of a function that takes multiple arguments into evaluating a sequence of functions, each with a single argument. For example, currying a function that takes three arguments creates a nested unary function , so that the code gives the same value as the code or called in sequence, In a more mathematical language, a function that takes two arguments, one from and one from , and produces outputs in by currying is translated into a function that takes a single argument from and produces as outputs functions from to This is a natural one-to-one correspondence between these two types of functions, so that the sets together with functions between them form a .