Summary
An induction generator or asynchronous generator is a type of alternating current (AC) electrical generator that uses the principles of induction motors to produce electric power. Induction generators operate by mechanically turning their rotors faster than synchronous speed. A regular AC induction motor usually can be used as a generator, without any internal modifications. Because they can recover energy with relatively simple controls, induction generators are useful in applications such as mini hydro power plants, wind turbines, or in reducing high-pressure gas streams to lower pressure. An induction generator draws reactive excitation current from an external source. Induction generators have an AC rotor and cannot bootstrap using residual magnetization to black start a de-energized distribution system as synchronous machines do. Power factor correcting capacitors can be added externally to neutralize a constant amount of the variable reactive excitation current. After starting, an induction generator can use a capacitor bank to produce reactive excitation current, but the isolated power system’s voltage and frequency are not self-regulating and destabilize readily. An induction generator produces electrical power when its rotor is turned faster than the synchronous speed. For a four-pole motor (two pairs of poles on stator) powered by a 60 Hz source, the synchronous speed is 1800 rotations per minute (rpm) and 1500 RPM powered at 50Hz. The motor always turns slightly slower than the synchronous speed. The difference between synchronous and operating speed is called "slip" and is often expressed as per cent of the synchronous speed. For example, a motor operating at 1450 RPM that has a synchronous speed of 1500 RPM is running at a slip of +3.3%. In operation as a motor, the stator flux rotation is at the synchronous speed, which is faster than the rotor speed. This causes the stator flux to cycle at the slip frequency inducing rotor current through the mutual inductance between the stator and rotor.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.