Plagiarism detection or content similarity detection is the process of locating instances of plagiarism or copyright infringement within a work or document. The widespread use of computers and the advent of the Internet have made it easier to plagiarize the work of others. Detection of plagiarism can be undertaken in a variety of ways. Human detection is the most traditional form of identifying plagiarism from written work. This can be a lengthy and time-consuming task for the reader and can also result in inconsistencies in how plagiarism is identified within an organization. Text-matching software (TMS), which is also referred to as "plagiarism detection software" or "anti-plagiarism" software, has become widely available, in the form of both commercially available products as well as open-source software. TMS does not actually detect plagiarism per se, but instead finds specific passages of text in one document that match text in another document. Computer-assisted plagiarism detection (CaPD) is an Information retrieval (IR) task supported by specialized IR systems, which is referred to as a plagiarism detection system (PDS) or document similarity detection system. A 2019 systematic literature review presents an overview of state-of-the-art plagiarism detection methods. Systems for text similarity detection implement one of two generic detection approaches, one being external, the other being intrinsic. External detection systems compare a suspicious document with a reference collection, which is a set of documents assumed to be genuine. Based on a chosen document model and predefined similarity criteria, the detection task is to retrieve all documents that contain text that is similar to a degree above a chosen threshold to text in the suspicious document. Intrinsic PDSes solely analyze the text to be evaluated without performing comparisons to external documents. This approach aims to recognize changes in the unique writing style of an author as an indicator for potential plagiarism.