Concept

Radical of a module

In mathematics, in the theory of modules, the radical of a module is a component in the theory of structure and classification. It is a generalization of the Jacobson radical for rings. In many ways, it is the dual notion to that of the socle soc(M) of M. Let R be a ring and M a left R-module. A submodule N of M is called maximal or cosimple if the quotient M/N is a simple module. The radical of the module M is the intersection of all maximal submodules of M, Equivalently, These definitions have direct dual analogues for soc(M). In addition to the fact rad(M) is the sum of superfluous submodules, in a Noetherian module rad(M) itself is a superfluous submodule. A ring for which rad(M) = {0} for every right R-module M is called a right V-ring. For any module M, rad(M/rad(M)) is zero. M is a finitely generated module if and only if the cosocle M/rad(M) is finitely generated and rad(M) is a superfluous submodule of M.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.