Basic oxygen steelmaking (BOS, BOP, BOF, or OSM), also known as Linz-Donawitz steelmaking or the oxygen converter process, is a method of primary steelmaking in which carbon-rich molten pig iron is made into steel. Blowing oxygen through molten pig iron lowers the carbon content of the alloy and changes it into low-carbon steel. The process is known as basic because fluxes of burnt lime or dolomite, which are chemical bases, are added to promote the removal of impurities and protect the lining of the converter.
The process was invented in 1948 by Swiss engineer Robert Durrer and commercialized in 1952–1953 by the Austrian steelmaking company VOEST and ÖAMG. The LD converter, named after the Austrian towns Linz and Donawitz (a district of Leoben) is a refined version of the Bessemer converter where blowing of air is replaced with blowing oxygen. It reduced capital cost of the plants and smelting time, and increased labor productivity. Between 1920 and 2000, labor requirements in the industry decreased by a factor of 1,000, from more than three man-hours per metric ton to just 0.003. The majority of steel manufactured in the world is produced using the basic oxygen furnace. In 2000, it accounted for 60% of global steel output.
Modern furnaces will take a charge of iron of up to 400 tons and convert it into steel in less than 40 minutes, compared to 10–12 hours in an open hearth furnace.
The basic oxygen process developed outside of traditional "big steel" environment. It was developed and refined by a single man, Swiss engineer Robert Durrer, and commercialized by two small steel companies in allied-occupied Austria, which had not yet recovered from the destruction of World War II.
In 1856, Henry Bessemer had patented a steelmaking process involving oxygen blowing for decarbonizing molten iron (UK Patent No. 2207). For nearly 100 years commercial quantities of oxygen were not available or were too expensive, and the invention remained unused.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course covers the metallurgy, processing and properties of modern high-performance metals and alloys (e.g. advanced steels, Ni-base, Ti-base, High Entropy Alloys etc.). In addition, the principle
Explores the conversion of raw iron into steel using the oxygen converter process, refining steel in a ladle furnace, electric arc furnace steelmaking, and the environmental impact of steelmaking.
Covers the fundamentals of steel metallurgy, high-performance steel classes, steelmaking process, Fe-C diagram, phases in steel, alloying elements, and heat treatment of steels.
Covers the fundamentals of steel metallurgy, including high-performance steel classes, steelmaking process, importance of steels, classification, alloying elements, phases, and heat treatment.
An electric arc furnace (EAF) is a furnace that heats material by means of an electric arc. Industrial arc furnaces range in size from small units of approximately one-tonne capacity (used in foundries for producing cast iron products) up to about 400-tonne units used for secondary steelmaking. Arc furnaces used in research laboratories and by dentists may have a capacity of only a few dozen grams. Industrial electric arc furnace temperatures can reach , while laboratory units can exceed .
An open-hearth furnace or open hearth furnace is any of several kinds of industrial furnace in which excess carbon and other impurities are burnt out of pig iron to produce steel. Because steel is difficult to manufacture owing to its high melting point, normal fuels and furnaces were insufficient for mass production of steel, and the open-hearth type of furnace was one of several technologies developed in the nineteenth century to overcome this difficulty.
Steelmaking is the process of producing steel from iron ore and/or scrap. In steelmaking, impurities such as nitrogen, silicon, phosphorus, sulfur and excess carbon (the most important impurity) are removed from the sourced iron, and alloying elements such as manganese, nickel, chromium, carbon and vanadium are added to produce different grades of steel. Steelmaking has existed for millennia, but it was not commercialized on a massive scale until the mid-19th century. An ancient process of steelmaking was the crucible process.
This work reports experimental results of the quantitative determination of oxygen and band gap measurement in the TiNx electrodes in planar TiNx top/La:HfO2/TiNx bottom MIM stacks obtained by plasma enhanced atomic layer deposition on SiO2. Methodological ...
Oxide inclusions are inevitably present in steel as a direct consequence of the steelmaking process; as a result, a cubic centimetre of modern steel will generally contain about a million of these hard and brittle micrometre-sized ceramic particles. Inclus ...
This work demonstrated that consolidated bioprocessing is a promising concept for conversion of lignocellulose to ethanol at industrial scale. CBP offers great cost saving potential, is feasible to be operated continuously and may be scaled up due to exten ...