Interpacket gapIn computer networking, the interpacket gap (IPG), also known as interframe spacing, or interframe gap (IFG), is a pause which may be required between network packets or network frames. Depending on the physical layer protocol or encoding used, the pause may be necessary to allow for receiver clock recovery, permitting the receiver to prepare for another packet (e.g. powering up from a low-power state) or another purpose. It may be considered as a specific case of a guard interval.
Frame check sequenceA frame check sequence (FCS) is an error-detecting code added to a frame in a communication protocol. Frames are used to send payload data from a source to a destination. All frames and the bits, bytes, and fields contained within them, are susceptible to errors from a variety of sources. The FCS field contains a number that is calculated by the source node based on the data in the frame. This number is added to the end of a frame that is sent.
EtherTypeEtherType is a two-octet field in an Ethernet frame. It is used to indicate which protocol is encapsulated in the payload of the frame and is used at the receiving end by the data link layer to determine how the payload is processed. The same field is also used to indicate the size of some Ethernet frames. EtherType is also used as the basis of 802.1Q VLAN tagging, encapsulating packets from VLANs for transmission multiplexed with other VLAN traffic over an Ethernet trunk.
Payload (computing)In computing and telecommunications, the payload is the part of transmitted data that is the actual intended message. Headers and metadata are sent only to enable payload delivery. In the context of a computer virus or worm, the payload is the portion of the malware which performs malicious action. The term is borrowed from transportation, where payload refers to the part of the load that pays for transportation. In computer networking, the data to be transmitted is the payload.
Subnetwork Access ProtocolThe Subnetwork Access Protocol (SNAP) is a mechanism for multiplexing, on networks using IEEE 802.2 LLC, more protocols than can be distinguished by the 8-bit 802.2 Service Access Point (SAP) fields. SNAP supports identifying protocols by EtherType field values; it also supports vendor-private protocol identifier spaces. It is used with IEEE 802.3, IEEE 802.4, IEEE 802.5, IEEE 802.11 and other IEEE 802 physical network layers, as well as with non-IEEE 802 physical network layers such as FDDI that use 802.
Medium access controlIn IEEE 802 LAN/MAN standards, the medium access control (MAC, also called media access control) sublayer is the layer that controls the hardware responsible for interaction with the wired, optical or wireless transmission medium. The MAC sublayer and the logical link control (LLC) sublayer together make up the data link layer. The LLC provides flow control and multiplexing for the logical link (i.e. EtherType, 802.1Q VLAN tag etc), while the MAC provides flow control and multiplexing for the transmission medium.
10 Gigabit Ethernet10 Gigabit Ethernet (abbreviated 10GE, 10GbE, or 10 GigE) is a group of computer networking technologies for transmitting Ethernet frames at a rate of 10 gigabits per second. It was first defined by the IEEE 802.3ae-2002 standard. Unlike previous Ethernet standards, 10GbE defines only full-duplex point-to-point links which are generally connected by network switches; shared-medium CSMA/CD operation has not been carried over from the previous generations of Ethernet standards so half-duplex operation and repeater hubs do not exist in 10GbE.
Network schedulerA network scheduler, also called packet scheduler, queueing discipline (qdisc) or queueing algorithm, is an arbiter on a node in a packet switching communication network. It manages the sequence of network packets in the transmit and receive queues of the protocol stack and network interface controller. There are several network schedulers available for the different operating systems, that implement many of the existing network scheduling algorithms. The network scheduler logic decides which network packet to forward next.
Jumbo frameIn computer networking, jumbo frames are Ethernet frames with more than 1500 bytes of payload, the limit set by the IEEE 802.3 standard. The payload limit for jumbo frames is variable: while 9000 bytes is the most commonly used limit, smaller and larger limits exist. Many Gigabit Ethernet switches and Gigabit Ethernet network interface controllers and some Fast Ethernet switches and Fast Ethernet network interface cards can support jumbo frames. Each Ethernet frame must be processed as it passes through the network.
IEEE P802.1pIEEE P802.1p was a task group active from 1995 to 1998, responsible for adding traffic class expediting and dynamic multicast filtering to the IEEE 802.1D standard. The task group developed a mechanism for implementing quality of service (QoS) at the media access control (MAC) level. Although this technique is commonly referred to as IEEE 802.1p, the group's work with the new priority classes and Generic Attribute Registration Protocol (GARP) was not published separately but was incorporated into a major revision of the standard, IEEE 802.