Summary
Nanotoxicology is the study of the toxicity of nanomaterials. Because of quantum size effects and large surface area to volume ratio, nanomaterials have unique properties compared with their larger counterparts that affect their toxicity. Of the possible hazards, inhalation exposure appears to present the most concern, with animal studies showing pulmonary effects such as inflammation, fibrosis, and carcinogenicity for some nanomaterials. Skin contact and ingestion exposure are also a concern. Nanomaterials have at least one primary dimension of less than 100 nanometers, and often have properties different from those of their bulk components that are technologically useful. Because nanotechnology is a recent development, the health and safety effects of exposures to nanomaterials, and what levels of exposure may be acceptable, is not yet fully understood. Nanoparticles can be divided into combustion-derived nanoparticles (like diesel soot), manufactured nanoparticles like carbon nanotubes and naturally occurring nanoparticles from volcanic eruptions, atmospheric chemistry etc. Typical nanoparticles that have been studied are titanium dioxide, alumina, zinc oxide, carbon black, carbon nanotubes, and buckminsterfullerene. Nanotoxicology is a sub-specialty of particle toxicology. Nanomaterials appear to have toxicity effects that are unusual and not seen with larger particles, and these smaller particles can pose more of a threat to the human body due to their ability to move with a much higher level of freedom while the body is designed to attack larger particles rather than those of the nanoscale. For example, even inert elements like gold become highly active at nanometer dimensions. Nanotoxicological studies are intended to determine whether and to what extent these properties may pose a threat to the environment and to human beings. Nanoparticles have much larger surface area to unit mass ratios which in some cases may lead to greater pro-inflammatory effects in, for example, lung tissue.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.