RetinoscopyRetinoscopy (Ret) is a technique to obtain an objective measurement of the refractive error of a patient's eyes. The examiner uses a retinoscope to shine light into the patient's eye and observes the reflection (reflex) off the patient's retina. While moving the streak or spot of light across the pupil the examiner observes the relative movement of the reflex or manually places lenses over the eye (using a trial frame and trial lenses) to "neutralize" the reflex.
LensmeterA lensmeter or lensometer (sometimes even known as focimeter or vertometer), is an ophthalmic instrument. It is mainly used by optometrists and opticians to measure the back or front vertex power of a spectacle lens and verify the correct prescription in a pair of eyeglasses, to properly orient and mark uncut lenses, and to confirm the correct mounting of lenses in spectacle frames. Lensmeters can also verify the power of contact lenses, if a special lens support is used.
Radius of curvature (optics)Radius of curvature (ROC) has specific meaning and sign convention in optical design. A spherical lens or mirror surface has a center of curvature located either along or decentered from the system local optical axis. The vertex of the lens surface is located on the local optical axis. The distance from the vertex to the center of curvature is the radius of curvature of the surface. The sign convention for the optical radius of curvature is as follows: If the vertex lies to the left of the center of curvature, the radius of curvature is positive.
Corneal topographyCorneal topography, also known as photokeratoscopy or videokeratography, is a non-invasive medical imaging technique for mapping the anterior curvature of the cornea, the outer structure of the eye. Since the cornea is normally responsible for some 70% of the eye's refractive power, its topography is of critical importance in determining the quality of vision and corneal health.
Near pointIn visual perception, the near point is the closest point at which an object can be placed and still form a focused image on the retina, within the eye's accommodation range. The other limit to the eye's accommodation range is the far point. A normal eye is considered to have a near point at about for a thirty year old. The near point is highly age dependent (see accommodation). A person with hyperopia or presbyopia would have a near point that is farther than normal.
Far pointIn visual perception, the far point is the farthest point at which an object can be placed (along the optical axis of the eye) for its image to be focused on the retina within the eye's accommodation. It is sometimes described as the farthest point from the eye at which images are clear. The other limit of eye's accommodation is the near point. For an unaccommodated emmetropic eye, the far point is at infinity, but for the sake of practicality, infinity is considered to be because the accommodation change from 6 m to infinity is negligible.
EmmetropiaEmmetropia is the state of vision in which a faraway object at infinity is in sharp focus with the ciliary muscle in a relaxed state. That condition of the normal eye is achieved when the refractive power of the cornea and eye lens and the axial length of the eye balance out, which focuses rays exactly on the retina, resulting in perfectly sharp distance vision. A human eye in a state of emmetropia requires no corrective lenses for distance; the vision scores well on a visual acuity test (such as an eye chart test).