In the field of physics concerning condensed matter, a Kohn anomaly (also called the Kohn effect) is an anomaly in the dispersion relation of a phonon branch in a metal. It is named for Walter Kohn. For a specific wavevector, the frequency (and thus the energy) of the associated phonon is considerably lowered, and there is a discontinuity in its derivative. They have been first proposed by Walter Kohn in 1959. In extreme cases (that can happen in low-dimensional materials), the energy of this phonon is zero, meaning that a static distortion of the lattice appears. This is one explanation for charge density waves in solids. The wavevectors at which a Kohn anomaly is possible are the nesting vectors of the Fermi surface, that is vectors that connect a lot of points of the Fermi surface (for a one-dimensional chain of atoms this vector would be ). The electron phonon interaction causes a rigid shift of the Fermi sphere and a failure of the Born-Oppenheimer approximation since the electrons do not follow any more the ionic motion adiabatically. In the phononic spectrum of a metal, a Kohn anomaly is a discontinuity in the derivative of the dispersion relation that occurs at certain high symmetry points of the first Brillouin zone, produced by the abrupt change in the screening of lattice vibrations by conduction electrons. Kohn anomalies arise together with Friedel oscillations when one considers the Lindhard theory instead of the Thomas–Fermi approximation in order to find an expression for the dielectric function of a homogeneous electron gas. The expression for the real part of the reciprocal space dielectric function obtained following the Lindhard theory includes a logarithmic term that is singular at , where is the Fermi wavevector. Although this singularity is quite small in reciprocal space, if one takes the Fourier transform and passes into real space, the Gibbs phenomenon causes a strong oscillation of in the proximity of the singularity mentioned above.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.