In statistics, the term higher-order statistics (HOS) refers to functions which use the third or higher power of a sample, as opposed to more conventional techniques of lower-order statistics, which use constant, linear, and quadratic terms (zeroth, first, and second powers). The third and higher moments, as used in the skewness and kurtosis, are examples of HOS, whereas the first and second moments, as used in the arithmetic mean (first), and variance (second) are examples of low-order statistics. HOS are particularly used in the estimation of shape parameters, such as skewness and kurtosis, as when measuring the deviation of a distribution from the normal distribution. In statistical theory, one long-established approach to higher-order statistics, for univariate and multivariate distributions is through the use of cumulants and joint cumulants. In time series analysis, the extension of these is to higher order spectra, for example the bispectrum and trispectrum. An alternative to the use of HOS and higher moments is to instead use L-moments, which are linear statistics (linear combinations of order statistics), and thus more robust than HOS.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.