In mathematics and computer science, the Entscheidungsproblem; ɛntˈʃaɪ̯dʊŋspʁoˌbleːm) is a challenge posed by David Hilbert and Wilhelm Ackermann in 1928. The problem asks for an algorithm that considers, as input, a statement and answers "yes" or "no" according to whether the statement is universally valid, i.e., valid in every structure satisfying the axioms.
By the completeness theorem of first-order logic, a statement is universally valid if and only if it can be deduced from the axioms, so the Entscheidungsproblem can also be viewed as asking for an algorithm to decide whether a given statement is provable from the axioms using the rules of logic.
In 1936, Alonzo Church and Alan Turing published independent papers showing that a general solution to the Entscheidungsproblem is impossible, assuming that the intuitive notion of "effectively calculable" is captured by the functions computable by a Turing machine (or equivalently, by those expressible in the lambda calculus). This assumption is now known as the Church–Turing thesis.
The origin of the Entscheidungsproblem goes back to Gottfried Leibniz, who in the seventeenth century, after having constructed a successful mechanical calculating machine, dreamt of building a machine that could manipulate symbols in order to determine the truth values of mathematical statements. He realized that the first step would have to be a clean formal language, and much of his subsequent work was directed toward that goal. In 1928, David Hilbert and Wilhelm Ackermann posed the question in the form outlined above.
In continuation of his "program", Hilbert posed three questions at an international conference in 1928, the third of which became known as "Hilbert's Entscheidungsproblem". In 1929, Moses Schönfinkel published one paper on special cases of the decision problem, that was prepared by Paul Bernays.
As late as 1930, Hilbert believed that there would be no such thing as an unsolvable problem.
Before the question could be answered, the notion of "algorithm" had to be formally defined.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course constitutes an introduction to theory of computation. It discusses the basic theoretical models of computing (finite automata, Turing machine), as well as, provides a solid and mathematica
This is an introductory course on Elliptic Partial Differential Equations. The course will cover the theory of both classical and generalized (weak) solutions of elliptic PDEs.
A Turing machine is a mathematical model of computation describing an abstract machine that manipulates symbols on a strip of tape according to a table of rules. Despite the model's simplicity, it is capable of implementing any computer algorithm. The machine operates on an infinite memory tape divided into discrete cells, each of which can hold a single symbol drawn from a finite set of symbols called the alphabet of the machine. It has a "head" that, at any point in the machine's operation, is positioned over one of these cells, and a "state" selected from a finite set of states.
Mathematical logic is the study of formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory (also known as computability theory). Research in mathematical logic commonly addresses the mathematical properties of formal systems of logic such as their expressive or deductive power. However, it can also include uses of logic to characterize correct mathematical reasoning or to establish foundations of mathematics.
Gödel's incompleteness theorems are two theorems of mathematical logic that are concerned with the limits of in formal axiomatic theories. These results, published by Kurt Gödel in 1931, are important both in mathematical logic and in the philosophy of mathematics. The theorems are widely, but not universally, interpreted as showing that Hilbert's program to find a complete and consistent set of axioms for all mathematics is impossible. The first incompleteness theorem states that no consistent system of axioms whose theorems can be listed by an effective procedure (i.
This paper presents a framework to derive instantiation-based decision procedures for satisfiability of quantified formulas in first-order theories, including its correctness, implementation, and evaluation. Using this framework we derive decision procedur ...
We study the decision problem for the existential fragment of the theory of power structures. We prove complexity results that parallel the decidability results of Feferman-Vaught for the theories of product structures thereby showing that the construction ...
EPFL2023
,
The popular isolation level multiversion Read Committed (RC) exchanges some of the strong guarantees of serializability for increased transaction throughput. Nevertheless, transaction workloads can sometimes be executed under RC while still guaranteeing se ...