Concept

JAK-STAT signaling pathway

The JAK-STAT signaling pathway is a chain of interactions between proteins in a cell, and is involved in processes such as immunity, cell division, cell death, and tumour formation. The pathway communicates information from chemical signals outside of a cell to the cell nucleus, resulting in the activation of genes through the process of transcription. There are three key parts of JAK-STAT signalling: Janus kinases (JAKs), signal transducer and activator of transcription proteins (STATs), and receptors (which bind the chemical signals). Disrupted JAK-STAT signalling may lead to a variety of diseases, such as skin conditions, cancers, and disorders affecting the immune system. Main articles: JAKs and STATs There are four JAK proteins: JAK1, JAK2, JAK3 and TYK2. JAKs contains a FERM domain (approximately 400 residues), an SH2-related domain (approximately 100 residues), a kinase domain (approximately 250 residues) and a pseudokinase domain (approximately 300 residues). The kinase domain is vital for JAK activity, since it allows JAKs to phosphorylate (add phosphate groups to) proteins. There are seven STAT proteins: STAT1, STAT2, STAT3, STAT4, STAT5A, STAT5B and STAT6. STAT proteins contain many different domains, each with a different function, of which the most conserved region is the SH2 domain. The SH2 domain is formed of 2 α-helices and a β-sheet and is formed approximately from residues 575–680. STATs also have transcriptional activation domains (TAD), which are less conserved and are located at the C-terminus. In addition, STATs also contain: tyrosine activation, amino-terminal, linker, coiled-coil and DNA-binding domains. The binding of various ligands, usually cytokines, such as interferons and interleukins, to cell-surface receptors, causes the receptors to dimerize, which brings the receptor-associated JAKs into close proximity. The JAKs then phosphorylate each other on tyrosine residues located in regions called activation loops, through a process called transphosphorylation, which increases the activity of their kinase domains.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.