Summary
A rocket-powered aircraft or rocket plane is an aircraft that uses a rocket engine for propulsion, sometimes in addition to airbreathing jet engines. Rocket planes can achieve much higher speeds than similarly sized jet aircraft, but typically for at most a few minutes of powered operation, followed by a gliding flight. Unhindered by the need for oxygen from the atmosphere, they are suitable for very high-altitude flight. They are also capable of delivering much higher acceleration and shorter takeoffs. Many rocket aircraft may be drop launched from transport planes, as take-off from ground may leave them with insufficient time to reach high altitudes. Rockets have been used simply to assist the main propulsion in the form of jet assisted take off (JATO) also known as rocket assisted take off (RATO or RATOG). Not all rocket planes are of the conventional takeoff like "normal" aircraft. Some types have been air-launched from another plane, while other types have taken off vertically – nose in the air and tail to the ground ("tail-sitters"). Because of the use of heavy propellants and other practical difficulties of operating rockets, the majority of rocket planes have been built for experimental or research use, as interceptor fighters and space aircraft. Peruvian polymath Pedro Paulet conceptualized the Avión Torpedo in 1902 – a liquid-propellant rocket-powered aircraft that featured a canopy fixed to a delta tiltwing – spending decades seeking donors for the aircraft while serving as a diplomat in Europe and Latin America. Paulet's concept of using liquid-propellant was decades ahead of rocket engineers at the time who utilized black powder as a propellant. Reports of Paulet's rocket aircraft concept first appeared in 1927 after Charles Lindbergh crossed the Atlantic Ocean in an aircraft. Paulet publicly criticized Austrian rocket pioneer Max Valier's proposal about a rocket-powered aircraft completing the journey faster using black powder, arguing that his liquid-propellant rocket aircraft from thirty years earlier would be a better option.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (7)
PHYS-101(f): General physics : mechanics
Le but du cours de physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr
PHYS-101(en): General physics : mechanics (English)
Students will learn the principles of mechanics to enable a better understanding of physical phenomena, such as the kinematics and dyamics of point masses and solid bodies. Students will acquire the c
ME-201: Continuum mechanics
Continuum conservation laws (e.g. mass, momentum and energy) will be introduced. Mathematical tools, including basic algebra and calculus of vectors and Cartesian tensors will be taught. Stress and de
Show more
Related publications (11)